
Using Lightweight Modeling To Understand Chord

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey USA
pamela@research.att.com

ABSTRACT

Correctness of the Chord ring-maintenance protocol would
mean that the protocol can eventually repair all disruptions
in the ring structure, given ample time and no further dis-
ruptions while it is working. In other words, it is “eventual
reachability.” Under the same assumptions about failure be-
havior as made in the Chord papers, no published version
of Chord is correct. This result is based on modeling the
protocol in Alloy and analyzing it with the Alloy Analyzer.
By combining the right selection of pseudocode and tex-
tual hints from several papers, and fixing flaws revealed by
analysis, it is possible to get a version that may be correct.
The paper also discusses the significance of these results, de-
scribes briefly how Alloy is used to model and reason about
Chord, and compares Alloy analysis to model-checking.

Categories and Subject Descriptors:
C.2.2 [Network Protocols]: Protocol Verification

General Terms:
Verification, Design, Documentation, Performance

Keywords:
Alloy, Spin, distributed hash table (DHT)

1. INTRODUCTION
The distributed hash table Chord requires little introduc-

tion. It was first presented in a 2001 SIGCOMM paper [9]
which won the 2011 SIGCOMM Test-of-Time Award. This
paper was accompanied by a technical report [10], and fol-
lowed shortly by a paper in Principles of Distributed Com-
puting [7] and a paper in Transactions on Networking [11].
For mnemonic purposes, these papers will be referred to as
[SIGCOMM], [TR], [PODC], and [TON], respectively.

The papers specify the ring-maintenance protocol by means
of some concise pseudocode and some text. [PODC] lists
invariants of the ring-maintenance protocol. The introduc-
tions of both [SIGCOMM] and [TON] say, “Three features
that distinguish Chord from many other peer-to-peer lookup
protocols are its simplicity, provable correctness, and prov-
able performance.” The papers refer to [TR] for the proof
of correctness.

Despite these assurances, there are reasons to question the
correctness of Chord. The invariants claimed in [PODC]
have inconsistencies and ambiguities. The proofs in [TR]
have undefined terms and unstated assumptions. The theo-
rems mix correctness with performance analysis in an overly

ambitious way. The breezy, informal reasoning seems prone
to the all-too-human misconception that complex systems
will work exactly the way we expect them to.

Distributed systems frequently do not work the way we
expect them to—but the gap between human intuition and
reality can now be bridged by powerful and convenient tools.
This led me to wonder whether there might be a better way
to reason about protocols such as Chord, without making
the investment necessary for full-fledged theorem proving.

In particular, lightweight modeling is the process of build-
ing a small, abstract formal model of the key concepts of a
software system, and then analyzing the model with a fully
automated (“push-button”) tool that works by exhaustive
enumeration over a bounded domain of possibilities. For
example, models written in Alloy can be analyzed by the
Alloy Analyzer [4], and models written in Promela can be
analyzed by the model-checker Spin [3]. This paper reports
on the use of Alloy modeling and analysis to study the cor-
rectness of Chord.

In this paper, correctness of the ring-maintenance proto-
col would mean that the protocol can eventually repair all
disruptions in the ring structure, given ample time and no
further disruptions while it is working. It is a form of “even-
tual consistency” with respect to reachability. If the proto-
col is incorrect, then some members of a Chord network can
become permanently unreachable from other members.

Eventual reachability is a different notion of correctness
from the much-studied properties of key consistency (which
means that all members agree about which members store
values for which keys) and data consistency (which means
that all members agree about the value of a particular key).
It is also a more fundamental notion of correctness, as ef-
forts to achieve key and data consistency assume eventual
reachability.

The analysis reported here uses exactly the same assump-
tions about failure as the Chord papers do. Briefly, there is
perfect failure detection, and successor lists are long enough
to guarantee that a member is never left with no live suc-
cessor.

Under the same assumptions made in the Chord papers,
the [SIGCOMM] version of the protocol is not correct, and
not one of the properties claimed invariant in [PODC] is
actually invariantly true of it. The [PODC] version satis-
fies one invariant, but is still not correct. The results are
presented by means of counterexamples to the invariants in
Section 4. In preparation for the results, Section 2 gives a
brief summary of the protocol and failure assumptions, and
Section 3 introduces the invariants.

By selecting the right pseudocode from several papers,
incorporating the right hints from the text of another pa-
per, and fixing small flaws revealed by analysis, it is possi-
ble to come up with a “best” version that may be correct.
Some implementors may have discovered this version inde-
pendently, but it is impossible to tell without reading the
code of various implementations, because the available im-
plementations do not provide version information. In addi-
tion, there are other ways to implement Chord that might be
provably correct or robust under weaker assumptions, with
some cost in performance. Chord versions and implementa-
tions are discussed in Section 5.

Whether one cares about Chord or not, the significance
of these results is that important research protocols such
as Chord exist in a haze of uncertainty about their speci-
fications, properties, versions, and performance characteris-
tics. Lightweight modeling can reduce this uncertainty with
relatively little effort and without specialized knowledge of
verification.

Section 6 is a brief overview of modeling in Alloy and
how it applies to Chord.1 It describes how Alloy was used
to reason about the protocol, including both successful and
unsuccessful techniques. Because of Alloy’s limitations, Sec-
tion 6 also compares its relative strengths and weaknesses
to those of model-checking. Section 7 concludes the paper
with recommendations based on what we know so far.

2. THE PROTOCOL
This section summarizes the protocol as specified in the

SIGCOMM paper. This version is discussed further in Sec-
tion 5, along with other versions.

Every member of a Chord network has an identifier (as-
sumed unique) that is an m-bit hash of its IP address. Every
member has a successor pointer, always shown as a solid ar-
row in the figures. Figure 1 shows two Chord networks with
m = 6, one in the ideal state of a ring ordered by identifiers,
and the other in the valid state of an ordered ring with ap-
pendages. In the networks of Figure 1, key-value pairs with
keys from 31 through 37 are stored in member 37.

While running the ring-maintenance protocol, a member
acquires and updates a predecessor pointer, which is always
shown as a dotted arrow in the figures. It also acquires a list
of extra successors. The second successor is always shown
as a dashed arrow.

The ring-maintenance protocol is specified in terms of
events, each of which changes the state of at most one mem-
ber. In executing an event, the member often queries other
members, then updates local pointers if it decides there are
better values. All analyses of Chord assume that inter-node
communication is reliable.

A machine becomes a member in a join event. When
a member joins, it contacts an existing member and gets
its own correct current successor from that member. Joins
cause the ring to have appendages such as those on the right
side of Figure 1.

When a member stabilizes, it learns its successor’s prede-
cessor. It adopts the predecessor as its new successor, pro-
vided that the predecessor is closer in identifier order than
its current successor. Members schedule their own stabilize
events periodically.

1All the Alloy code for this work is available at http://
www2.research.att.com/~pamela/chord.html.

1648

3037

10
62 62

48

50

53

16

3037

10

9

63

Figure 1: Ideal (left) and valid (right) networks.
Members are represented by their identifiers.

After stabilizing, a node notifies its successor of its iden-
tity. The notified member adopts the notifying member as
its new predecessor if the notifying member is closer in iden-
tifier order than its current predecessor. Thus a stabilize
event always causes a notified event.

The purpose of stabilize and notified events is to repair
disruptions in the ring structure caused by join events. The
pure-join protocol is the version of the Chord protocol with
only join, stabilize, and notified events. The pure-join proto-
col is correct, in the sense that it has the following property:
In any execution state, if there are no subsequent joins, then
eventually the network will become ideal and remain ideal.
This theorem has been proven with the help of the Alloy
Analyzer [14].

A machine ceases to become a member in a fail event,
which also represents silent leaving of the network. When
a member fails, it no longer responds to queries from other
members. Until a member fails, it is responsive to queries.
Together these assumptions allow perfect failure detection.
Also, a member never fails if its failure would leave another
member with no live (live means not failed or dead) succes-
sor in its successor list. In the model, this constraint com-
pensates for the fact that successor lists are short. These
assumptions and constraints on failure behavior are the ba-
sis for all analyses of Chord, including [PODC] and this
paper’s.

Failures can produce holes in the ring. These disruptions
are repaired with the help of reconcile, update, and flush
events, each of which is executed periodically by each mem-
ber, according to its own schedule.

When a member reconciles, it adopts its successor’s suc-
cessor as its second successor (if successor lists are longer
than two, it adopts its successor’s entire successor list ex-
cept for the last entry). When a member updates, it replaces
a successor pointer to a dead member by the first successor
pointer in its list that points to a live member. When a
member flushes, it discards a dead predecessor.

The full protocol contains all seven events.2 If it were
correct, it would have the following property guaranteeing
eventual reachability: In any execution state, if there are no
subsequent join or fail events, then eventually the network
will become ideal and remain ideal.

2The full protocol state also includes finger tables to opti-
mize lookups, but these are not relevant to correctness.

16

6

16

6

16

6

8 8

8

8 stabilizes
and

notifies 16

and
notifies 16

6 stabilizes
and

10 10

10
notifies 10

8 and 10 join, 10 stabilizes

Figure 2: Three stages (left to right) creating a counterexample to OrderedMerges.

3. THE INVARIANTS
The invariants claimed in [PODC] are found in Definition

5.6 of that paper. We are not concerned with quantitative or
probabilistic properties, nor with finger tables. This leaves
us with Parts 1, 4(a), 4(b), 5(b), 5(c), and 5(d) of Definition
5.6, using some terminology defined in Section 5.2.

It takes some reformulation to make these properties com-
plete, consistent, and unambiguous enough to be written
in Alloy. For example, connectivity (Part 1) is defined as
“There is a path using successor lists and finger tables con-
necting any two nodes.” If “path using successor lists”
has the obvious meaning of a path traversable by following
successor pointers, then only networks without appendages
can have connectivity. A node in an appendage cannot be
reached by following successor pointers (or finger tables)
from any node in the cycle or another appendage.

The spirit of connectivity is most conveniently expressed
in Alloy as three properties: AtLeastOneRing (there is a cy-
cle), AtMostOneRing (the network has not broken into mul-
tiple cycles), and ConnectedAppendages (each appendage is
connected to the cycle).

Part 4(a) is formalized as OrderedRing, while Part 4(b) is
formalized as OrderedAppendages. The spirit of these prop-
erties is that the order imposed by successors is consistent
with identifier order, in the cycle and in the appendages
respectively.

Part 5(b) is difficult to interpret, and is either frequently
violated, a tautology, or means the same thing as 4(a) [15].
Part 5(c) is formalized as OrderedMerges (an appendage
merges into the ring at the right place). Part 5(d) is for-
malized as ValidSuccessorList (see below).

4. RESULTS
The correctness results are given in this section by means

of counterexamples to the invariants. Although other re-
searchers have found problems with Chord implementations
[1, 5, 13], they have not reported any of the problems re-
ported here.

The seven Alloy invariants are divided into two categories,
depending on whether they are needed for key and data
consistency or for correctness.

4.1 Useful invariants
The three claimed invariants in this section are all desir-

able because they help support key and data consistency.
Their consequences are presented here primarily in terms of
lookups that should succeed but might fail. They are not

necessary for correctness because states that do not satisfy
them can eventually be repaired by the protocol.

The first claimed invariant is OrderedMerges. Informally,
it says that an appendage merges into the ring at the right
place in identifier order. OrderedMerges is easily violated,
as shown in Figure 2.

Each figure in Section 4 consists of a sequence of alter-
nating text blocks and diagrams. A text block describes a
sequence of events. A diagram following a text block is a
snapshot, showing the static state of the network after the
events in the text block are finished. The arrows in the dia-
grams are first or second successors or predecessor pointers,
depending on whether they are solid, dashed, or dotted re-
spectively. In Figure 2, only part of the network is shown,
and the section from 6 to 16 can be part of a ring of any
size.

The scenario in Figure 2 begins when two appendages
merge into the ring at 16. As the scenario unfolds, 10 gets
incorporated into the ring before 8, and 8 ends up merging
into the ring at the wrong place. From 8, lookup of keys 10
through 15 will fail, even though they would have succeeded
if 8 were merging at the correct place.

Failure to understand how Chord networks behave also
compromises the validity of performance analysis. For ex-
ample, the performance analysis in [6] assumes that every
stabilization event that changes a successor reduces the over-
all number of wrong successors by one. This assumption is
incorrect: the stabilization by 6 in Figure 2 is one of several
categories that change a successor but do not reduce the
overall number of wrong successors.

The second claimed invariant is OrderedAppendages. In-
formally, it says that members are ordered correctly within
an appendage. OrderedAppendages can be violated, as shown
in Figure 3.

Violations of OrderedAppendages are similar in their con-
sequences to violations of OrderedMerges. In the final state
of Figure 3, from 5, a lookup of key 32 will fail, even though
it would have succeeded if the appendage were ordered cor-
rectly. Note that when 44 is incorporated into the ring, the
network will violate OrderedMerges.

The third claimed invariant is ValidSuccessorList. It can
be paraphrased as saying that if v and w are members, and if
w’s successor list skips over v, then v is not in the successor
list of any immediate antecedent of w. ValidSuccessorList
can be violated, as shown in Figure 4. In the figure, the
section from 9 to 25 can be part of a ring of any size.

In all the figures, “incorporated into the ring” is a short-
hand for four events. The joining node must stabilize and

60

60
60

5

5

5

5

32 32
32

32

44

44

44

44
60 stabilizes

and notifies 32,
44 stabilizes

and notifies 60

5 stabilizes
and notifies 44,

32 and 44 reconcile

60 fails,
32 and 44 update,

32 flushes,
44 stabilizes and notifies 32

Figure 3: Four stages (left to right) creating a counterexample to OrderedAppendages.

13

25

9

17

20

25

17

9
13

9

25

13

17

20

13

25

9

20

into the ring,
is incorporated

20 joins and

into the ring
incorporated

13 is

9 reconciles
13 updates

17 fails,

Figure 4: Three stages (left to right) creating a counterexample to ValidSuccessorList, and a fourth stage
showing its effect after a failure.

notify, and then its predecessor in the ring must stabilize
and notify.

It is not easy to tell from its definition why ValidSucces-
sorList is desirable. However, the fourth stage of Figure 4
shows that if it is violated, as it is in the third stage, then
a member that was once in the ring (here 20) can revert to
being an appendage. Until it is once more incorporated into
the ring, its data will be inaccessible. In fact, the same prob-
lem can occur when there is a skipped member between a
member’s first and second successor, and the first successor
fails, even if ValidSuccessorList is not violated [2].

4.2 Invariants required for correctness
The four claimed invariants in this section are necessary

for correctness. If any one of them is violated, it creates
a disruption in the ring structure that cannot be repaired
by the ring-maintenance protocol, no matter how long it is
allowed to run without further join and fail events to cope
with.

The first such invariant is ConnectedAppendages. Infor-
mally, it says that an appendage to the ring stays connected
to the ring. ConnectedAppendages can be violated, as shown
in Figure 5. In the figure, the section from 5 to 22 can be
part of a ring of any size.

In Figure 5, member 7’s only connection to the network is
through ex-member 9. When 5 updates to improve its suc-
cessor, the ring as defined by successors no longer includes 9.

The next claimed invariant is named AtLeastOneRing. In-
formally, it says that there is always a ring of members, all
reachable from each other. AtLeastOneRing can be violated,

5

9

5

2222

9

7

9
fails

5

22

9 5 updates
7 joins,

Figure 5: Three stages (left to right) creating a
counterexample to ConnectedAppendages.

as shown in Figure 6. In the figure, the section from 6 to 12
can be part of a ring of any size.

Before the first stage of Figure 6, 10 has joined, stabilized,
and notified 12. After 10 fails and 6 stabilizes, there is a gap
in the ring, with no successor from 10 to 12. Although the
gap is more apparent after 12 flushes its predecessor pointer
to 10, this is not necessary for the counterexample.

The next claimed invariant is OrderedRing. Informally, it
says that the ring is always ordered by identifiers. There
is actually a class of counterexamples to this property, one
for each odd ring size above 2. The counterexample for ring
size 3 is shown in Figure 7.

In the multi-event transition from the first stage in Fig-
ure 7 to the second, three new members join the network
and become incorporated into the ring. In the multi-event

an ideal
state

0

1840

0

1840

5

21

49

0

4018

three
members

join
and are

incorporated
into ring

new members
fail, old

members
update

Figure 7: Three stages (left to right) creating a counterexample to OrderedRing.

25

60

31 19

60

25

60

25

an ideal
state

two
members

join
and are

incorporated
into ring

new
members
fail, old

members
update

Figure 8: Three stages (left to right) creating a counterexample to AtMostOneRing.

12

10

6

6

12

10
fails

10

10

6

6 stabilizes,
12 flushes

12

Figure 6: Three stages (left to right) creating a
counterexample to AtLeastOneRing.

transition from the second stage to the third, all three new
members fail, and all three old members update to promote
their second successors. The result is a ring that is not or-
dered by identifiers.

The final claimed invariant is AtMostOneRing. Infor-
mally, it says that the network does not break apart into
two or more separate rings. There is a class of counterex-
amples to this property, one for each even ring size at or
above 2. The counterexample for ring size 2 is shown in
Figure 8.

In the multi-event transition from the first stage in Fig-
ure 7 to the second, two new members join the network and
become incorporated into the ring. In the multi-event tran-
sition from the second stage to the third, both new members
fail, and both old members update to promote their second
successors. The result is two disconnected rings.

5. VERSIONS OF CHORD

5.1 Versions of the specification
The version of the protocol that yields these counterex-

amples is based on the pseudocode for join, stabilize, and
notified from [SIGCOMM], which is the same as in [TON].
These papers do not provide details about failure recovery.
[PODC] is the only published paper with pseudocode for
failure recovery, so the specification of reconcile, update, and
flush events has been filled in from [PODC].

[PODC] improves the pseudocode of a join event to in-
clude the effects of a reconcile event. Because this forces
a joining member to contact its new successor, and popu-
lates its successor list immediately, we can assume that it
is implemented to prevent the problem in Figure 5. All the

other counterexamples can still occur, and the protocol is
still incorrect.

I have constructed a “best” version of the protocol by
selecting the pseudocode from [PODC] rather than [SIG-
COMM]/[TON] and improving it with the help of a few
selected hints in the text of [TON]. In this version stabilize
and update events also include the effects of reconcile events.
The specifications of both join and stabilize events have been
altered to prevent the problems in Figures 5 and 6.

Although the “best” version still has the problems in Fig-
ures 2 and 3, the other counterexamples can no longer occur,
and this version may be correct. Note that the counterexam-
ples in Section 4 are mere artifacts of the analysis process,
so getting rid of these problems is no guarantee that other
problems are absent.

5.2 Chord implementations
Examining the Web sites of ten Chord implementations,3

not one of them comments on the version or specification
used. It is possible that implementors have discovered the
“best” version independently, or made other improvements.
If they have, there is no way for others to benefit from their
knowledge. It is impossible to tell which version of the spec-
ification is used by any implementation without reading the
code.

In fact, there is no guarantee that any known version of
the specification is implemented. Work reported in [12] con-
cerns techniques for automatically discovering system invari-
ants from system implementations. The authors give as an
example an invariant automatically discovered by analyzing
an implementation of “Chord.” Yet this invariant cannot
possibly be true of a Chord implementation, because if it
were true, the implementation could never create a ring with
more than one member [15]. This means that the analyzed
implementation is fundamentally different from Chord.

The uncertainty about versions is especially damaging to
research progress because different versions can have very
different performance characteristics and levels of correct-
ness. To give an extreme example, [TR] and [PODC] in-
clude a different ring-maintenance protocol called “strong
stabilization.” It is far slower than the normal protocol, but
it has the capacity to repair almost any structural defect. A
Chord implementation that invoked strong stabilization at
appropriate times or intervals would be correct by almost
any definition, but it might not perform well enough to be
useful.

To give another example, the OverLog (P2) implementa-
tion has specific time constraints on the frequencies of var-
ious maintenance events, although the Chord papers leave
timing unconstrained [8]. Under certain assumptions about
the frequencies of disrupting join and fail events, these time
constraints might ensure correctness of the P2 implementa-
tion.

6. ON LIGHTWEIGHT MODELING
IN ALLOY

6.1 Modeling
The Alloy language is a well-designed, object-oriented blend

of first-order predicate logic and relational algebra, with the

3From http://pdos.csail.mit.edu/chord/faq.html.

sig Node {

succ: Node lone -> Time,

succ2: Node lone -> Time,

prdc: Node lone -> Time,

bestSucc: Node lone -> Time }

open util/ordering[Node] as nodeOrder

fact JoinEvent {

all j: Join, n: j.node, t: j.pre |

NonMember[n,t]

&& (some m: Node | Member[m,t]

&& Between[m,n,m.succ.t]

&& Member[m.succ.t,t]

&& n.succ.(j.post) = m.succ.t

)

&& no n.prdc.(j.post) }

pred OneOrderedRing [t: Time] {

let ringMembers =

{ n: Node | n in n.(^(bestSucc.t)) } |

some ringMembers -- at least one ring

&& (all disj n1, n2: ringMembers |

n1 in n2.(^(bestSucc.t))) -- not two

&& (all disj n1, n2, n3: ringMembers |

n2 = n1.bestSucc.t => ! Between[n1,n3,n2]

-- ring is globally ordered

) }

Figure 9: Fragments from an Alloy model of Chord.

second-order operator of transitive closure built in. For any-
one with a basic understanding of these concepts, Alloy is
easy to learn.4

Building an operational model of a protocol in Alloy is
also easy, provided that the model is abstract enough to omit
many implementation details. In Alloy, it is easiest to model
distributed communication by means of shared state. The
models written for this paper all allow members to read the
states of other members, which avoids many implementation
details while preserving the central concepts of Chord.

Figure 9 shows four fragments from the model of Chord in
Alloy. This is not intended as an Alloy tutorial, but rather
just a brief taste of the language. The first fragment says
that there are individuals of type Node. At any time, each
node has one or zero of each of these four pointers: succ,
succ2, prdc, and bestSucc. Separate constraints say that a
node is a member of the network (i.e., live) if and only if it
has a succ pointer, and that the value of bestSucc is the first
successor pointing to a member, if any.

The second fragment invokes a library component. The
result is that node individuals themselves are totally or-
dered, and there is no need for a separate node identifier.

The third fragment specifies a join event. Bound variable
j is the event, n is the joining node, t is the time preceding
the event, and m is the member from which n gets its suc-
cessor. There are four preconditions that must be true at
time t: n is not a member, m is a member, n is between m
and its successor in identifier order, and m’s successor is a

4See http://alloy.mit.edu for documentation and down-
loads.

member. There are two postconditions that must be true
immediately after t: the successor of n is the successor of m,
and n has no predecessor pointer. The full protocol, includ-
ing all declarations and all seven events, requires about 100
lines.

It is equally important to formalize the properties that
the protocol is believed to satisfy. Formalizing properties is
easy when the modeling language is a good match for the
desired properties. Alloy is particularly well-suited to ex-
pressing graph properties of a network state, which matches
the [PODC] invariants.

For example, the fourth fragment is a combined definition
of the properties AtLeastOneRing, AtMostOneRing, and Or-
deredRing. The set ringMembers contains all members that
can reach themselves by following bestSucc pointers. The
set must not be empty, or there would be no ring. Any two
distinct members of it must be able to reach each other, or
the network would have broken into multiple rings. If there
are members n1 and n2 where n2 is the best successor of n1,
then no third member can come between them in identifier
order.

With a succinct yet complete and analyzable model like
this available as the specification for Chord, it would be easy
to document versions and improvements so that all imple-
mentations could converge toward the best version. This is
well worth doing, whether the protocol is proven correct or
not.

6.2 Analysis
The other half of lightweight modeling is analysis to see

if the model is internally consistent, and if it satisfies the
asserted properties. Analyzers are designed to fit their mod-
eling and assertion languages, so that any asserted property
can be checked with a button push. If a model is consis-
tent, then the analyzer will return an example of it. If a
property is not satisfied by a model, then the analyzer will
return a counterexample that violates it. Alloy has excellent
visualization tools for customized display of examples and
counterexamples as graphs.5

Push-button analysis is not as powerful as true verifi-
cation because it works by exhaustive enumeration over a
bounded—and usually small—domain of possibilities. For
example, Chord properties can only be checked by the Al-
loy Analyzer for networks with 5-8 members. Experience
shows, however, that analysis of small systems detects most
problems. For systems with as much symmetry as a ring
network, there is overwhelming theoretical and experimen-
tal evidence that analysis of small systems is sufficient [14].

The limitation of the Alloy Analyzer with respect to pro-
tocols is that time and temporal properties are not built in
or optimized, so that the Analyzer can only search short
traces. This is not an obstacle if we know an Alloy formula
that characterizes all the states that the network can enter
during execution—in other words, a global invariant. For ex-
ample, there is an Alloy-supported proof that the pure-join
version of Chord is correct [14]. For this proof, the Analyzer
establishes that:
• The initial state satisfies the proposed global invariant.
• If the proposed global invariant holds before any event, it

also holds after the event. In other words, it really is an
invariant.

5In the visualizer, click “Magic Layout” to get a time se-
quence of state snapshots.

• If a state satisfies the global invariant but is not ideal,
then some event is enabled that will improve the state.

• If a state is ideal, then no event (except for join) is enabled
that will change the state.

Because a network is finite and can only require a finite
number of improvements to become ideal, and because the
proof only need apply when there are no new join events,
these are sufficient to prove correctness.

Ideally, a protocol would be designed with a global invari-
ant in mind, so that the invariant is part of the design from
the beginning, and is constantly being checked as protocol
events are designed. At the very least, this would provide
designers with realistic feedback about how far the protocol
diverges from their expectations.

6.3 Limitations and other approaches
The problem with using Alloy on Chord, even with the

“best” version of Chord, is that we do not know the global
invariant (if there is one). It can be extremely difficult to
reverse-engineer a global invariant. For example, most of
the work to get the results in Section 4 proceeded as follows,
starting with a proposed global invariant:

• Analyze to see if the proposed global invariant is preserved
by all events. Find an event that causes it to be violated.

• On the presumption that the pre-state could not have
arisen in a real execution, make the invariant stronger to
exclude the pre-state.

• Analyze to see if the proposed global invariant is preserved
by all events. Find an event that causes it to be violated.

• On the presumption that the post-state (the one that vi-
olates the invariant) is benign, make the invariant weaker
to allow the post-state.

• Repeat.

When this process does not converge, the only escape is to
find a real trace from the initial state to a property violation,
proving that the property is violated. Because this trace will
be too long to be discovered by the Alloy Analyzer alone,
it must be discovered manually, by working backward from
a violation. After discovery, the long trace can be checked
for validity by the Analyzer, because no search is required.
For example, the counterexamples in Section 4 have been
checked; a typical trace is 20 events, far beyond the search-
able length of under 5.

As an alternative, a model-checker such as Spin with its
modeling language Promela is also a good tool for lightweight
modeling, with weaknesses and strengths that are comple-
mentary to those of Alloy. On the one hand, graph prop-
erties cannot be expressed in Promela, so it is necessary to
express each property indirectly by means of a C program
that checks for it. Spin traces do not look anything like
snapshots of graphs, so it is necessary to write another C
program to display counterexamples. These barriers make
it difficult to experiment with graph properties, something
that is easy with Alloy.

On the other hand, model-checkers are designed for the
expression of temporal properties, and optimized for check-
ing all traces. When a model-checker runs, it constructs an
internal representation of all the states that can occur during
execution. This substitutes for a global invariant. Note that
the internal representation constructed by a model-checker
cannot be used as a global invariant in the sense of Sec-
tion 6.2, because it is very large and not human-readable.

At the moment, the best approach to producing an after-
the-fact proof of correctness is not known. In future work,
we will explore the use of model-checking for this purpose,
and compare it with the use of Alloy.

7. CONCLUSIONS
For complex protocols such as Chord, there is every reason

to use lightweight modeling as a design and documentation
tool. It will be easy, and is essentially guaranteed to increase
the quality of specifications and implementations. For pro-
tocols such as Chord where viewing a network as a graph is
the most interesting abstraction, Alloy is the best choice for
lightweight modeling.

In the design of distributed hash tables and other complex
distributed systems, there are difficult trade-offs among cor-
rectness, performance, and operating assumptions. Correct-
ness by construction often comes at the cost of performance.
Assumptions about the operating conditions for a system,
including load and failure modes, have a big effect on both
performance and correctness requirements.

Although lightweight modeling does not answer any of
the questions posed by these trade-offs, it can help create
an environment in which both experiments and verification
contribute to answering them. Simply put, the exact specifi-
cation of a protocol really does affect its performance and its
correctness. If an implementation implements an unknown
specification, then nothing fundamental can be learned by
experimenting with it.

Acknowledgments
Helpful discussions with Trevor Jim, Arvind Krishnamurthy,
Yun Mao, and Jennifer Rexford have contributed greatly to
this work.

8. REFERENCES
[1] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and

I. Stoica. Non-transitive connectivity and DHTs. In
Proceedings of the 2nd Conference on Real, Large,
Distributed Systems, pages 55–60. USENIX, 2005.

[2] L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in Scatter. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles. ACM, October 2011.

[3] G. J. Holzmann. The Spin Model Checker: Primer
and Reference Manual. Addison-Wesley, 2004.

[4] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. MIT Press, 2006.

[5] C. Killian, J. A. Anderson, R. Jhala, and A. Vahdat.
Life, death, and the critical transition: Finding
liveness bugs in systems code. In Proceedings of the
4th USENIX Symposium on Networked System Design
and Implementation, pages 243–256, 2007.

[6] S. Krishnamurthy, S. El-Ansary, E. Aurell, and
S. Haridi. A statistical theory of Chord under churn.
In Peer-to-Peer Systems IV. Springer-Verlag LNCS
3640, 2005.

[7] D. Liben-Nowell, H. Balakrishnan, and D. Karger.
Analysis of the evolution of peer-to-peer systems. In
Proceedings of the 21st ACM Symposium on Principles
of Distributed Computing, pages 233–242. ACM, 2002.

[8] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. In Proceedings of the 20th ACM Symposium
on Operating System Principles, pages 75–90. ACM,
2005.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proceedings
of SIGCOMM. ACM, August 2001.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for
Internet applications. MIT LCS Technical Report 819,
www.pdos.lcs.mit.edu/chord/papers/chord-tn,
2001.

[11] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup protocol for
Internet applications. IEEE/ACM Transactions on
Networking, 11(1), February 2003.

[12] M. Yabandeh, A. Anand, M. Canini, and D. Kostić.
Almost-invariants: From bugs in distributed systems
to invariants. Technical report, EPFL
NSL-REPORT-2009-007, 2009.

[13] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak.
CrystalBall: Predicting and preventing inconsistencies
in deployed distributed systems. In Proceedings of the
6th USENIX Symposium on Networked Systems
Design and Implementation. USENIX, April 2009.

[14] P. Zave. Lightweight modeling of network protocols:
The case of Chord. Technical report, AT&T
Laboratories—Research, January 2010.

[15] P. Zave. Experiences with protocol description.
Technical report, AT&T Laboratories—Research,
June 2011. Presented at the 1st International
Workshop on Rigorous Protocol Engineering, October
2011, Vancouver, British Columbia.

