
The DFC Manual

Michael Jackson Pamela Zave

November 2003

Contents

1 Introduction (Nov 03) 1
1.1 What is DFC? (Nov 03) . 1
1.2 Scope of DFC (Nov 03) . 1
1.3 Notation (Nov 03) . 2

2 Boxes, box types, and addresses (Nov 03) 3
2.1 Boxes (May 01) . 3
2.2 Box types (Nov 03) . 3
2.3 Addresses (Nov 03) . 4
2.4 Alphabets (May 01) . 4
2.5 Address mappings (Nov 03) . 4
2.6 Feature box addresses (Nov 03) 5

3 Features and subscriptions (Nov 03) 5
3.1 Regions and zones (Nov 03) . 5
3.2 Features and feature box types (Nov 03) 6
3.3 Routing choices (Nov 03) . 6
3.4 Precedence (Nov 03) . 7
3.5 Subscriptions (Nov 03) . 7

4 Signals (Nov 03) 8

5 How boxes affect routing (Nov 03) 8
5.1 Basic concepts (May 01) . 8
5.2 The setup signal (Nov 03) . 8
5.3 Access to setup signals by boxes (Nov 03) 9
5.4 New setup signals (Nov 03) . 10
5.5 Continued setup signals (Nov 03) 10
5.6 Reversed setup signals (Nov 03) 11

i

6 The routing algorithm (Nov 03) 12
6.1 Basic concepts (Nov 03) . 12
6.2 Step 1: Extract target (Nov 03) 13
6.3 Step 2: Expand zone (Nov 03) 13
6.4 Step 3: Advance region (Nov 03) 14
6.5 Step 4: Choose callee box (Nov 03) 15
6.6 Properties of DFC routing (Nov 03) 16

7 Operational data (Nov 03) 17

8 The call protocol (Nov 03) 18
8.1 Basic concepts (Nov 03) . 18
8.2 Router protocol (Mar 01) . 18
8.3 Caller port protocol (Dec 02) . 19
8.4 Callee port protocol (Dec 02) . 20
8.5 Chains of related calls (Nov 03) 20
8.6 Call-level status signals (Jan 03) 21
8.7 Properties of the call protocol (Dec 02) 22

9 The media channel protocol (Nov 03) 23
9.1 Basic concepts (Dec 02) . 23
9.2 The augmented call protocol (Dec 02) 24
9.3 Channel identifiers (Jun 01) . 26
9.4 The channel protocol (Nov 03) 26
9.5 Synchronization of signaling and media (Aug 01) 29
9.6 Channel-level status signals (Dec 02) 29
9.7 Properties of the channel protocol (Dec 02) 30

10 Behavior of line and trunk interface boxes (Jan 03) 31
10.1 Ports on interface boxes (Dec 02) 31
10.2 Interface protocols (Jan 03) . 31
10.3 User-interface signaling (Dec 02) 32

11 Media processing (Jan 03) 33
11.1 Media (Mar 01) . 33
11.2 Links (Mar 01) . 33
11.3 Resources and resource interface boxes (Jan 03) 33

Glossary 34

References 41

ii

1 Introduction (Nov 03)

1.1 What is DFC? (Nov 03)

DFC (“Distributed Feature Composition”) is an architecture for the description
and implementation of telecommunication services. DFC was designed for gen-
erality, feature modularity, structured feature composition, and implementation-
independence. The principal concepts and initial version of DFC are presented
in [5]. The major changes that have been made to the initial version of DFC
are explained by [6, 7, 8]. An IP-based implementation of DFC is described in
[1].

This manual provides a current description of DFC that can be read sequen-
tially or used for reference. Current research papers related to DFC can be
found at [2].

The glossary at the end of this manual is the primary tool for cross-referencing.
It defines all the important terms, and lists the chief sections where each is dis-
cussed.

1.2 Scope of DFC (Nov 03)

DFC describes a telecommunication network whose boundary is marked by in-
terface boxes. Outside the boundary are telecommunication devices and other
networks. They communicate with the DFC network through various protocols.

Inside the boundary, DFC describes telecommunication features, their logical
composition, and their effect on the signaling and media channels that pass
through the interface boxes. Inside the boundary, a single protocol is used
uniformly. The primary function of the interface boxes is conversion between
the inner and outer protocols.

The DFC architecture is not concerned with:

• how the abstract architecture is implemented on a telecommunication net-
work, or how its resources are allocated and optimized;

• how the call-processing it describes is connected to the business processes
of billing, marketing, and customer care.

Furthermore, the DFC specification describes a telecommunication network
whose configuration (interfaces, addresses, features, subscriptions, and persis-
tent data directly related to them) is static. It is not concerned with the provi-
sioning mechanisms for initializing them or for changing them during the lifetime
of the system.

Most parts of the configuration can change during the lifetime of the system;
some anomalies may result, but they will be transient. If some part of the
configuration is explicitly labeled as fixed or static, then it really cannot change
during the lifetime of the system.

1

1.3 Notation (Nov 03)

Two formal description languages are used in the manual:

• Alloy [4] is used to describe data and signal formats, and operations on
data and signals; and

• Promela [3] is used to describe the protocols by which interface and feature
boxes communicate with one another and with DFC routers.

Most formal descriptions are paraphrased in English, so familiarity with these
languages is not absolutely necessary for reading this manual. Because Alloy
is less widely known than Promela, and because this manual actually uses an
older version of it, our Alloy-based syntax is explained here.

A domain is a basic set. A fixed domain has fixed membership. All domains
are disjoint. A list of sets can be declared to partition another set, or to be
disjoint (but not exhaustive) subsets of another set.

New sets can be formed using + for set union and - for set difference. The
Boolean set operators are in for set containment, = for set equality, and != for
set inequality. Every set has a distinguished subset emptySet with no members.

If X is a set, then XSeq is the set of all finite sequences with members in X.
Every set XSeq has a distinguished subset emptySeq; it contains one member
of XSeq, which is the sequence having no elements. The boolean operator el is
used for sequence membership.

A variable V is typed in a declaration of the form V: T, the type T is simply
a set, and the value of a variable is a subset of its type. The value of a variable
can be constrained further by using one of the multiplicity markings + (one or
more), ? (one or zero), or ! (exactly one) to indicate the size of the subset.
The keyword fixed means that the value is constant.

A binary relation R is typed in a declaration of the form R: S -> T, where S
and T are sets. The general form R: S m -> T n includes multiplicity markings
m and n. This constrains R to map each element of S to n elements of T , and
to map m elements of S to each element of T . R: S -> static T means that R
always maps a particular element of S to the same subset of T .

If S is a set and R is a relation R: S -> T, then S.R is the relational image of
S under R. In other words, it is the union of all the sets obtained by applying R
to individuals in S. The transpose of a relation is denoted by prefixing its name
with a tilde.

Assertions are expressed in standard logic, with quantifiers all, some, sole,
binary operators &&, ||, ==>, <=>, and unary operator !. Quantification pro-
duces singleton subsets rather than individuals. For example, the assertion

all x: X | x in X

is true, which means that in the formula x in X, each x is a singleton subset of
X rather than an individual in X. The quantifier sole denotes that there is at
most one singleton subset with the specified property.

2

2 Boxes, box types, and addresses (Nov 03)

2.1 Boxes (May 01)

Boxes are either interface boxes, feature boxes, or error boxes.

domain { Box }
partition IBox, FBox, EBox: Box

An interface box is either a line interface box, which provides an interface to an
external telecommunication device such as a telephone, or a trunk interface box,
which provides an interface to customers attached to other telecommunication
networks, or a resource interface box, which provides an interface to media-
processing resources such as announcement players, message recorders, and text-
to-voice converters.

partition LIBox, TIBox, RIBox: IBox

A feature box is either a free feature box or a bound feature box. Free feature
boxes are transient and interchangeable. When a router must incorporate a
free feature box into a usage, it creates a new instance of the feature box type.
Bound feature boxes are persistent and dedicated to particular addresses. When
a router must incorporate a bound feature box into a usage, only the unique
box of appropriate type bound to the appropriate address may be chosen.

partition FFBox, BFBox: FBox

An error box is transient and interchangeable. Its purpose is to handle address-
ing errors that arise during routing (see Section 6.5). The box simply accepts a
call, sends the signal unknown upstream, and tears down the call.

2.2 Box types (Nov 03)

A box type is either an interface box type, feature box type, or error box type. A
feature box type is either a free feature box type or a bound feature box type.

domain { BoxType }
EBoxType: BoxType !
partition IBoxType, FBoxType, EBoxType: BoxType
partition FFBoxType, BFBoxType: FBoxType

Each box has a permanent type in BoxType:

boxType: Box -> static BoxType !

all b: IBox | b.boxType in IBoxType
all b: FFBox | b.boxType in FFBoxType
all b: BFBox | b.boxType in BFBoxType
all b: EBox | b.boxType = EBoxType

3

2.3 Addresses (Nov 03)

Addresses point to line, trunk, and resource interface boxes. Addresses are also
used as mobile subscriber addresses that are not permanently associated with
any interface box. An address that is currently mapped to an interface box or
is a current mobile subscriber’s address is said to be in use.

The addresses in use for these purposes belong to four disjoint subsets LAd-
dress, TAddress, RAddress and MAddress. Each DFC network’s address set
also contains a distinguished null value that is never in use and belongs to none
of the four subsets.

domain { Address }
disjoint LAddress, TAddress, RAddress, MAddress: Address

noAddr: fixed Address !
noAddr in Address - (LAddress + TAddress + RAddress + MAddress)

2.4 Alphabets (May 01)

Each DFC network uses two symbol alphabets, one for addressing and one for
signaling. The addressing alphabet AAlphabet is a proper subset of the signaling
alphabet SAlphabet. This relationship makes it possible to spell out all addresses
using signals or sequences of signals, and still have some symbols left over for
delimiters.

A member of AString is a sequence of symbols from AAlphabet. A member
of SString is a sequence of symbols from SAlphabet.

The set Address of legal addresses in a DFC network is a subset of AString
defined by syntactic restrictions.

Although members of SString and Address are not atomic and are struc-
turally related, the formal description treats them as atomic and unrelated.
Like Address, SString needs a distinguished null value.

domain { fixed SString }

noString: fixed SString !

2.5 Address mappings (Nov 03)

Address mappings are global data used for routing. They are initialized data of
a DFC network. There are three address mappings: LMap, TMap, and RMap.

LAddress is the set of addresses that uniquely identify line interface boxes.
LMap is an address mapping from members of LAddress to members of LIBox.
LMap is a bijection, or, in other words, it is invertible and onto.

LMap: LAddress ! -> LIBox !

TAddress is the set of addresses known to the DFC network but belong-
ing primarily to other telecommunication networks, and reachable only through

4

them via trunk interface boxes. Within DFC, TMap maps some members of
TAddress nondeterministically to trunk interface boxes: many members of TAd-
dress can be reached via one trunk interface box, and many trunk interface boxes
can be used to reach one member of TAddress.

TMap: TAddress -> TIBox

If a trunk interface box is not in the range of TMap, then it is supporting only
trunks for inbound calls. If a member of TAddress is not in the domain of
TMap, then it is only useful as a source of inbound calls, and the only purpose
of making it known to the DFC network is to allow it to subscribe to source-zone
feature boxes.

RAddress is the set of addresses used by box programmers to reach media-
processing resources. A member of RAddress names a type of resource rather
than an individual resource. The type corresponds, in turn, to a fixed pro-
gramming interface, which is all that a box programmer needs to know. RMap
maps a member of RAddress to some RIBox of the appropriate type. It is to-
tal. An RIBox can have several addresses, if it implements several different
programming interfaces.

RMap: RAddress + -> RIBox +

There is no address mapping for the setMAddress of mobile addresses. These
addresses have no permanent associations with interface boxes, and thus require
no address mapping.

2.6 Feature box addresses (Nov 03)

Each feature box has an address. This address is the subscribing address on
whose behalf it is created and/or assembled into a usage (see Section 6.5). A
bound box type has at most one instance with a particular address.

boxAddr: FBox ->
static (LAddress + TAddress + RAddress + MAddress) !

all t: BFBoxType | all a: Address |
sole b: Box | b.boxType = t && b.boxAddr = a

3 Features and subscriptions (Nov 03)

3.1 Regions and zones (Nov 03)

A source region of a usage is associated with a source address. A feature box
is incorporated into a usage in a source region because the source address sub-
scribes to the feature box in the source region, which means that the box is
relevant to calls in which that address identifies the caller. A Speed Dialing
feature box is always found in a source region.

5

A target region of a usage is associated with a target address. A feature
box is incorporated into a usage in a target region because the target address
subscribes to the feature box in the target region, which means that the box is
relevant to calls in which that address identifies the callee. A Call Forwarding
feature box is always found in a target region.

domain { fixed Region }
partition srcRegn, trgRegn: fixed Region !

In general, a region can consist of several zones. Each zone of a source region
contains all the feature boxes subscribed to in the source region by a particular
source address. There can be more than one zone in the source region because
there can be more than one source address in the usage. Each zone of a target
region contains all the feature boxes subscribed to in the target region by a
particular target address. There can be more than one zone in the target region
because there can be more than one target address in the usage.

When used in the most straightforward way, the DFC routing algorithm
generates usages with one source region followed by one target region. Real
usages can be more complex, because they emerge from the actions of multiple
feature boxes employing the routing algorithm on multiple calls, and connecting
usage fragments together however they please.

3.2 Features and feature box types (Nov 03)

Features are provided by feature boxes.
The function providesFeature indicates which feature box types belong to

and are required to implement a feature. Every feature has at least one box
type.

domain { Feature }

providesFeature: FBoxType + -> Feature !

Some feature box types are reversible.

reversible: FBoxType

A feature box type must be reversible if it uses the reversedSetupSignal method
or if it is bound and it can be subscribed to in both regions. A Call Waiting
box is reversible.

3.3 Routing choices (Nov 03)

The feature box types that can be routed to in the source region are specified
by the set srcChoice. The feature box types that can be routed to in the target
region are specified by the set trgChoice.

srcChoice: FBoxType
trgChoice: FBoxType

6

Each reversible box type must be available in both regions. As stated above, if
a box type is bound and available in both regions, then it must be in reversible.

reversible in srcChoice && reversible in trgChoice

all t: BFBoxType |
(t in srcChoice && t in trgChoice) ==> t in reversible

3.4 Precedence (Nov 03)

There are two precedence relations, which constrain the order of feature boxes
within zones.

srcPrecedes: srcChoice -> srcChoice
trgPrecedes: trgChoice -> trgChoice

Each precedes relation is a partial order.
The precedes relations on reversible box types are more constrained. First,

each relation is a total order on reversible box types. Second, the total order in
the target region is the reverse of the total order in the source region.

all t1, t2: reversible |
(t1 in t2.srcPrecedes && t2 in t1.trgPrecedes) ||
(t2 in t1.srcPrecedes && t1 in t2.trgPrecedes)

3.5 Subscriptions (Nov 03)

Addresses in use can subscribe to feature box types in both the source and
target regions.

srcSubscribes: Address -> srcChoice
trgSubscribes: Address -> trgChoice

all a: Address |
a !in (LAddress + TAddress + RAddress + MAddress)

==> a.srcChoice = emptySet && a.trgChoice = emptySet

If an address subscribes to a bound box type, then there must be a box of that
type bound to it, and vice versa.

all a: Address | all t: BFBoxType |
(t in a.srcSubscribes || t in a.trgSubscribes)

<=> (some b: BFBox | b.boxAddr = a && b.boxType = t)

If an address subscribes to a reversible box type in one region, then it must
subscribe to it in the other region.

all a: Address | all t: reversible |
t in a.srcSubscribes <=> t in a.trgSubscribes

7

Every address has a srcZone and a trgZone containing its source and target
choices, respectively.

srcZone: Address -> BoxTypeSeq !
trgZone: Address -> BoxTypeSeq !

all a: Address | all t: FBoxType |
(t el a.srcZone <=> t in a.srcChoice)

&& (t el a.trgZone <=> t in a.trgChoice)

A srcZone or trgZone is a sequence with no duplicates. The order of box types
in a srcZone is consistent with the partial order established by srcPrecedes. The
order of box types in a trgZone is consistent with the partial order established
by trgPrecedes.

4 Signals (Nov 03)

The messages of the DFC protocol are called signals.

domain { Signal }

A signal has a signal type and some set of named, typed fields. Some signal types
will be specified as having particular required or optional fields. Any signal can
have extra, programmer-defined fields that are not specified by DFC.

5 How boxes affect routing (Nov 03)

5.1 Basic concepts (May 01)

A usage is a dynamic assembly of interface and feature boxes connected by
internal calls. To place an internal call, a box prepares a setup signal and
sends it to a DFC router. The DFC router, which is stateless in the sense that
it maintains no records of usages, applies the routing algorithm to the setup
signal, and finds a box to which it routes the internal call. If the box accepts
the call, then the usage has grown by one call and one box.

Thus the growth of a usage is affected both by box programs, which prepare
setup signals, and the routing algorithm, which routes them to boxes. This
section presents what box programs can do to prepare setup signals. Section 6
presents the routing algorithm.

5.2 The setup signal (Nov 03)

Each signal with type setup has the following fields:

setup: Signal

regn: setup -> Region !

8

src: setup -> Address !
dld: setup -> SString !
trg: setup -> Address !
route: setup -> (ZoneTag + BoxTypeSeq) !

where ZoneTag is enumerated:

domain { fixed ZoneTag }
partition whole, suffix: fixed ZoneTag !

In addition, some setup signals have the following fields:

placing: setup -> BoxType ?
outer: setup -> Address ?

The meaning of the regn field is explained in Section 3.1. The fields src and trg
contain the notional source and target addresses of the usage. In a simple usage,
the setup signal of every call might contain the same two addresses in these fields.
In more complex situations, however, many feature boxes could change these
addresses as a usage unfolds. Similarly, the field dld usually contains the string
dialed by the user originating the usage, but it, too, can be modified by features.

The field route is a record used by the routing algorithm. The field placing
is the box type of the caller box that sends the setup signal; it is only needed
in certain circumstances (see Section 5.6).

The field outer is the address of the placing box, as defined in Sections 2.5
and 2.6. It is only needed in certain circumstances (see Sections 5.4, 5.5, 5.6).

5.3 Access to setup signals by boxes (Nov 03)

A box program can examine the fields of a received setup signal through a
programming interface. The only predefined fields that a box program can
examine are regn, src, dld, trg, and outer . A box program can also examine
extra fields that have been added to setup signals by other boxes.

Note that a box can use these fields to determine its own subscriber. If the
value of regn is srcRegn, then the box’s subscriber’s address is the value of src.
If the value of regn is trgRegn, then the box’s subscriber’s address is the value
of trg .

To place an internal call, a box must prepare a setup signal for it using one
of three methods. These methods are specified in the next three subsections.
As the specifications will show, the box program does not have direct control
over every field.

Although it is not repeated in the next three subsections, each method allows
a box program to add or delete extra fields of a setup signal, or to change the
value of an extra field that was provided by another box. If a method prepares
a new setup signal from an old setup signal, then all extra fields of the old setup
signal that have not been explicitly deleted or changed are copied into the new
setup signal.

9

5.4 New setup signals (Nov 03)

The newSetupSignal method constructs a completely new setup signal de novo:
that is, it does not require the presence in the box of a previously received setup
signal.

If an interface box places a call, it must use newSetupSignal. As a general
rule, feature boxes should only use this method when they are setting up calls
to resources or when they are truly acting as endpoints.

In the specification of the method, b is the box invoking the method, and s
is the resulting setup signal. The box program’s only choices are the arguments
dldArg and trgArg. No placing field is needed in s.

s.regn = srcRegn
b in FBox ==> s.src = b.boxAddr
b in LIBox ==> s.src = b.~LMap
b in TIBox ==> s.src in TAddress
s.dld = dldArg
s.trg = trgArg
s.route = whole
s.outer = s.src

Because of various odd situations that arise in the real world, the src field cannot
be constrained very closely when the placing box is a trunk interface. Resource
interface boxes do not place calls.

5.5 Continued setup signals (Nov 03)

The continuedSetupSignal method creates a new setup signal by modification of
a setup signal that has been previously received and stored by the box. This
method is never used by an interface box.

continuedSetupSignal is by far the most commonly used method. A feature
box uses this method to continue and extend a chain of internal calls, all being
set up in the same direction.

In the specification of the method, b is the box invoking the method, ss is
the stored setup signal, and s is the resulting setup signal. The box program’s
only choices are the arguments srcArg, dldArg and trgArg.

In this context, an argument value noAddr means “no change”. There is a
precondition on these arguments, because a box program cannot be allowed to
specify a change, yet leave the routing address unchanged.

ss.regn = srcRegn && srcArg != noAddr ==> srcArg != b.boxAddr
ss.regn = trgRegn && trgArg != noAddr ==> trgArg != b.boxAddr

The specification of the method is as follows:

s.regn = ss.regn

s.regn = srcRegn && srcArg != noAddr ==>

10

s.src = srcArg && s.route = whole && s.outer = b.boxAddr
s.regn = srcRegn && srcArg = noAddr ==>

s.src = b.boxAddr && s.route = ss.route
s.regn = trgRegn && trgArg != noAddr ==>

s.trg = trgArg && s.route = whole
s.regn = trgRegn && trgArg = noAddr ==>

s.trg = b.boxAddr && s.route = ss.route

s.regn = srcRegn && trgArg != noAddr ==> s.trg = trgArg
s.regn = srcRegn && trgArg = noAddr ==> s.trg = ss.trg
s.regn = trgRegn && srcArg != noAddr ==> s.src = srcArg
s.regn = trgRegn && srcArg = noAddr ==> s.src = ss.src

dldArg != noString ==> s.dld = dldArg
dldArg = noString ==> s.dld = ss.dld

No placing field is needed in s. An outer field is needed only if the setup is in
the source region and the source address is changing. In this case the field can
be used for authentication by the feature box that receives the call.

5.6 Reversed setup signals (Nov 03)

The reversedSetupSignal method creates a new setup signal by modification of
a setup signal that has been previously sent, yet is still stored by the box. This
method can only be used by a reversible feature box.

A feature box uses the reversedSetupSignal method to place an outgoing call
that reverses a previous outgoing call. In the modified setup signal, the region
has changed, and the source and target roles are reversed. This is needed when
a complete end-to-end connection path contains internal calls placed in different
directions, which often happens when segments of a path are shared or reused.
The various restrictions on reversible box types, and the way that DFC routers
handle reversed setup signals, are all designed to ensure an orderly progression
of feature boxes in such paths [6].

For example, consider a Mid-Call Move feature box routed to in the source
region. Until triggered, it simply receives an incoming internal call and continues
it transparently. When it is triggered by a signal from the subscriber, its function
is to place a new outgoing internal call to a telephone the subscriber would like
to be using. Once the subscriber has answered the new telephone and hung up
the original telephone, the move is complete. Now the end-to-end path between
the subscriber and the far party has a reused segment and a new segment, set
up in different directions and connected in the Mid-Call Move box.

In the specification of the method, b is the box invoking the method, ss is
the stored setup signal, and s is the resulting setup signal. The box program’s
only choices are the arguments srcArg, dldArg and trgArg.

In this context, an argument value noAddr means “no change”. There is a
precondition on these arguments, because a box program cannot be allowed to

11

specify a change, yet leave the routing address unchanged. All together, the
method has the following preconditions.

b.boxType in reversible

ss.regn = trgRegn && srcArg != noAddr ==> srcArg != b.boxAddr
ss.regn = srcRegn && trgArg != noAddr ==> trgArg != b.boxAddr

The specification of the method is as follows:

ss.regn = srcRegn ==> s.regn = trgRegn
ss.regn = trgRegn ==> s.regn = srcRegn

s.regn = srcRegn && srcArg != noAddr ==>
s.src = srcArg && s.route = whole && s.outer = b.boxAddr

s.regn = srcRegn && srcArg = noAddr ==>
s.src = b.boxAddr && s.route = suffix &&
s.placing = b.boxType

s.regn = trgRegn && trgArg != noAddr ==>
s.trg = trgArg && s.route = whole

s.regn = trgRegn && trgArg = noAddr ==>
s.trg = b.boxAddr && s.route = suffix &&
s.placing = b.boxType

s.regn = srcRegn && trgArg != noAddr ==> s.trg = trgArg
s.regn = srcRegn && trgArg = noAddr ==> s.trg = ss.src
s.regn = trgRegn && srcArg != noAddr ==> s.src = srcArg
s.regn = trgRegn && srcArg = noAddr ==> s.src = ss.trg

dldArg != noString ==> s.dld = dldArg
dldArg = noString ==> s.dld = ss.dld

The placing field is needed only if the value of route is suffix. An outer field is
needed only if the resulting setup is in the source region and the source address
is changing. In this case the field can be used for authentication by the feature
box that receives the call.

6 The routing algorithm (Nov 03)

6.1 Basic concepts (Nov 03)

For each internal call, the setup signal created by an interface or feature box is
sent to any DFC router. DFC routers are interchangeable.

The router modifies the setup signal and chooses a callee box to which the
call is routed. The router always succeeds in choosing a callee box: if necessary it
chooses a box whose sole function is to diagnose such failures as an unobtainable
address.

12

The specification of the routing algorithm takes the form of a parameterized
predicate:

DFCRoutingAlgorithm(out, inn: setup !, box: Box !)

The parameters out and inn represent the setup signals sent by the caller port
and received by the callee port, respectively. The parameter box is the callee
box.

The operation of DFC routers on a setup signal consists of four steps, spec-
ified in the next four subsections. Intermediate results produced by the first
three steps are specified using local setup variables st1, st2, st3. So the five
setup signals out, st1, st2, st3, inn are actually implemented as one setup signal
whose fields change as it goes through the routing process.

6.2 Step 1: Extract target (Nov 03)

The user who initiates a usage can produce a dialed string. This string might
indicate a target address, but that address might be encoded in the string along
with other information. If so, it must be extracted from the string.

The partial function embeddedAddress finds the address embedded in a string,
if there is any.

embeddedAddress: SString -> Address ?

This function is used in Step 1 to supply a target address, if no target address
is already present. The specification of Step 1 is:

st1.regn = out.regn
st1.src = out.src
st1.dld = out.dld
st1.route = out.route
st1.placing = out.placing
st1.outer = out.outer

(out.trg != noAddr || dld.embeddedTarget = emptySet)
==> st1.trg = out.trg

(out.trg = noAddr && dld.embeddedTarget != emptySet)
==> st1.trg = dld.embeddedTarget

6.3 Step 2: Expand zone (Nov 03)

Step 2 expands a ZoneTag into a whole or partial zone, which is the sequence
of box types that are expected to be next in the usage. The local variable st1
holds the input to this step. The local variable st2 holds the output from this
step. The specification of Step 2 is:

st2.regn = st1.regn
st2.src = st1.src

13

st2.dld = st1.dld
st2.trg = st1.trg
st2.outer = st1.outer
st2.placing = emptySet

st1.route in BoxTypeSeq ==> st2.route = st1.route
st1.regn = srcRegn && st1.route = whole

==> st2.route = st1.src.srcZone
st1.regn = trgRegn && st1.route == whole

==> st2.route = st1.trg.trgZone
st1.regn = srcRegn && st1.route = suffix

==> st2.route = st1.src.srcZone.suffixAfter[st1.placing]
st1.regn = trgRegn && st1.route = suffix

==> st2.route = st1.trg.trgZone.suffixAfter[st1.placing]

In this specification, suffixAfter[marker], where marker is a singleton set, is a
special attribute of any sequence sequence. If marker el sequence, then its value
is the subsequence coming after the sequence member marker. If marker !el
sequence, then its value is sequence. suffixAfter is only applied to zones, which
are sequences with no duplicates, so we do not need to specify its value in the
presence of duplicates.

Recall from Section 5 that route is suffix only when the setup signal has been
created in a reversible box by the reversedSetupSignal method. The placing box
type appears in both zones of the address relevant to regn. The result of taking
the suffix of the zone is exactly what would have been in st1.route, if this setup
signal had been created by the continuedSetupSignal method.

6.4 Step 3: Advance region (Nov 03)

If the source region is exhausted, Step 3 advances the region from source to
target. The local variable st2 holds the input to this step. The local variable
st3 holds the output from this step. The specification of Step 3 is:

st3.src = st2.src
st3.dld = st2.dld
st3.trg = st2.trg
st3.placing = emptySet

st2.regn = srcRegn && st2.route = emptySeq
==> st3.regn = trgRegn && st3.route = st2.trg.trgZone &&

st3.outer = emptySet
st2.regn = trgRegn || st2.route != emptySeq

==> st3.regn = st2.regn && st3.route = st2.route
st3.outer = st2.outer

If the region is advanced, then route becomes the target zone of the target
address. The outer field is removed because its information should not propagate
across the region boundary [6].

14

6.5 Step 4: Choose callee box (Nov 03)

The fourth and final step of routing is to choose a callee box and send the
modified setup signal to it. The final setup signal is held by the parameter inn,
while the callee box is held by the parameter box. The specification also uses
local variables bt, which is the type of the callee box, and addr, which is the
address of the callee box.

¿From the specification of Step 3 we can deduce:

st3.route = emptySeq ==> st3.regn = trgRegn

This is useful in understanding the specification of Step 4 (the sequence at-
tributes head and tail have their usual meanings):

inn.regn = st3.regn
inn.src = st3.src
inn.dld = st3.dld
inn.trg = st3.trg
inn.placing = emptySet
inn.outer = st3.outer

st3.regn = srcRegn ==>
inn.route = st3.route.tail && bt = st3.route.head &&
addr = st3.src

st3.regn = trgRegn && st3.route != emptySeq ==>
inn.route = st3.route.tail && bt = st3.route.head &&
addr = st3.trg

st3.route = emptySeq ==>
inn.route = emptySeq && bt in IBoxType && addr = st3.trg

bt in FBoxType ==>
box in FBox && box.boxType = bt && box.boxAddr = addr

bt in IBoxType && addr in LAddress ==> box = addr.LMap
bt in IBoxType && addr in TAddress ==>

(addr.TMap != emptySet ==> box in addr.TMap) &&
(addr.TMap = emptySet ==> box in EBox)

bt in IBoxType && addr in RAddress ==> box in addr.RMap
bt in IBoxType && addr in MAddress ==> box in EBox
bt in IBoxType &&

addr in Address - (LAddress + TAddress + RAddress + MAddress)
==> box in EBox

If there is a nonempty route, this step routes to a feature box whose type
matches the box type at the head of the route. In the source region, the address
of this box is the source address; in the target region, the address of this box is
the target address. If the box type is bound, the box is uniquely determined.

If the route is empty, this step tries to route to an interface box mapped to
by the target address. If this is not possible, it routes to an error box instead.

15

6.6 Properties of DFC routing (Nov 03)

Finally, it is possible to summarize certain properties of the routing algorithm
as a whole.

out.regn = srcRegn ==> inn.regn = srcRegn || inn.regn = trgRegn
out.regn = trgRegn ==> inn.regn = trgRegn

inn.src = out.src
inn.dld = out.dld
inn.trg = st1.trg

inn.regn = srcRegn ==> inn.route in inn.src.srcZone.suffixesOf
inn.regn = trgRegn ==> inn.route in inn.trg.trgZone.suffixesOf

inn.placing = emptySet
inn.regn = trgRegn ==> inn.outer = emptySet

inn.regn = srcRegn ==> bt el inn.src.srcZone
inn.regn = trgRegn ==> bt el inn.trg.trgZone || bt in IBoxType

inn.regn = srcRegn ==> addr = inn.src
inn.regn = trgRegn ==> addr = inn.trg

Here suffixesOf is an attribute of every set of sequences. It is the set of all
sequences that are suffixes of elements of the original set of sequences.

An ideal connection path is a path of internal calls, linked together in slightly
restricted ways (see below) by feature boxes. Here are some of the theorems that
have been proved about ideal connection paths [6], stated briefly and informally:

• A path has at most one call in which Step 3 advances the region (this is
a midpoint call).

• A path that connects two interface boxes has a midpoint call.

• A path containing a midpoint call has no cycles.

• In any zone (contiguous feature boxes of one address), unless the zone
is truncated by address translation (address translation occurs when a
box continues or reverses a setup signal, changing the source or target
address as it does so), ordering the boxes from innermost to outermost
(from closest to the midpoint to closest to an interface box), the sequence
of reversible box types is fixed.

Note that a zone of an ideal connection path can contain internal calls set up
in alternating directions, so the last theorem is a strong statement about the
orderliness of DFC routing.

An ideal connection path cannot include calls to resources, and cannot in-
clude some intra-box links created by conferencing. For example, suppose that

16

user a has end-to-end paths to users b and c. First a is switching between the
two paths, and then a conferences them together. The end-to-end path between
a and b is ideal, and the end-to-end path between a and c is ideal, but the
end-to-end path between b and c created by conferencing is not ideal.

7 Operational data (Nov 03)

Operational data is persistent data that can be read and written by feature
boxes. Operational data is partitioned into relations; OpRelation is the set of
all such relations. Operational data is categorized in two ways:

• If a relation is in featurePartitioned, it supports a particular feature.

• If a relation is in customerPartitioned, each of its tuples describes and
belongs to a particular customer.

All operational data relations must be either feature-partitioned or customer-
partitioned, and many are both.

domain { OpRelation }

featurePartitioned: OpRelation
customerPartitioned: OpRelation

OpRelation = featurePartitioned + customerPartitioned

supportsFeature: featurePartitioned -> Feature !

Access to operational data by feature boxes is restricted in two ways. The
first restriction is that a feature box b can only access a data relation d if the
data is not feature-partitioned, or if it is feature-partitioned and b is a box of
the correct feature:

(d in OpRelation - featurePartitioned) ||
(b.boxType.providesFeature = d.supportsFeature)

The second restriction is based on a provisioned ownership relationship be-
tween customers and addresses. An address need not be owned by a customer.
If it is owned, however, it can only be owned by one customer. Each customer
must own at least one address.

domain { Customer }

owner: (LAddress + TAddress + MAddress) + -> Customer ?

If d in customerPartitioned, then the tuples of d belonging to customer c
can be accessed by a feature box b only if:

b.boxAddr = a && a.owner = c

17

8 The call protocol (Nov 03)

8.1 Basic concepts (Nov 03)

Boxes use the call protocol to set up and tear down internal calls.
The primary signals types used in the call protocol are:

mtype = { setup,upack,
other,
teardown,downack }

The placeholding signal type other represents additional signal types that will
be introduced later. Some are part of the call protocol, and some are part of
the media channel protocol.

Every signal has a tunnel field. The value of a tunnel field is a non-negative
integer. Signals referring specifically to media channel n have n in their tunnel
fields. Signals referring to the call as a whole have zero in their tunnel fields.

This version of the call protocol is written in Promela, for a reference im-
plementation based on packet-switched networks. A reference implementation
more suitable for circuit-switched networks can be found in [5].

In this Promela program there is a queue, containing incoming signals, for
every location that can receive signals. These locations are either ports on
boxes, boxes themselves, or DFC routers. The queues are arranged in an array
to, with indices of type byte ranging from zero to locsize - 1. Queue indices are
henceforth simply referred to as queues.

chan to[locsize] = [chansize] of {byte,mtype,byte}

In the Promela program, each signal has three fields:

• The first holds the queue of the location from which it was originally sent;

• the second holds the signal type;

• the third holds the tunnel.

8.2 Router protocol (Mar 01)

A DFC router does nothing but receive setup signals from calling ports and
forward them to appropriate boxes. In the following program for a router, the
argument thisrouter supplies the router’s queue. The placeholder box represents
the router’s current choice of box.

proctype router(byte thisrouter)
{ byte from;
end_begin: do

:: to[thisrouter]?from,setup,0;
to[box]!from,setup,0

od
}

18

A DFC network can have any number of routers. In subsequent programs,
router represents the queue of any router.

8.3 Caller port protocol (Dec 02)

Next we present a program for a port that attempts to place a call. The argu-
ment thisport supplies the port’s own queue.

proctype caller_port
(byte thisport)

{ byte farport,tunnel;
end_idle: to[router]!thisport,setup,0;

to[thisport]?farport,upack,0;
linked: do

:: to[farport]!thisport,other,tunnel
:: to[thisport]?eval(farport),other,tunnel
:: to[farport]!thisport,teardown,0; goto unlinking
:: to[thisport]?eval(farport),teardown,0;

to[farport]!thisport,downack,0; goto end_idle
od;

unlinking: do
:: to[thisport]?eval(farport),other,tunnel
:: to[thisport]?eval(farport),teardown,0;

to[farport]!thisport,downack,0
:: to[thisport]?eval(farport),downack,0; goto end_idle
od

}

The caller port first sends its setup signal to a router, which has the only
queue (besides its own) that it knows. When the response of type upack comes
back, the call is set up. The queue of origin of the upack signal is bound to
the local variable farport. The difference between the two uses of the variable
farport in the statements:

to[thisport]?farport,upack,0;
to[thisport]?eval(farport),other,tunnel

is that the first receive action binds farport to the value in the first field of the
signal received, while the second receive is only executable if the first field of
the signal received matches the current value of farport.

For the rest of the call, there is a signaling channel between the two partici-
pating ports farport and thisport. Any sequence of other signals can be sent on
it, in either direction.

Either port can initiate the teardown sequence by sending a teardown signal.
The port then enters the unlinking state, in which it reads leftover signals until
it finally receives a downack signal from the other port, which must be the final
signal it will receive in this call.

19

The recipient of the teardown signal must send a downack signal to acknowl-
edge it. Equally important, once it receives a teardown, it must send no other
signals in this call except the downack.

Both ports can send teardown signals at about the same time, so that the
signals cross in transmission. A port that receives a teardown after sending its
own simply acknowledges it and then continues to wait for the acknowledgment
of its own.

8.4 Callee port protocol (Dec 02)

Each box has a distinguished port thisbox, which receives all setup signals for
the box. The box responds to each setup signal by allocating to it an idle callee
port, and handing it off to that port. The callee port completes the protocol
for that call.

This program gives the protocol for a callee port. The argument thisport
supplies the queue of the callee port.

proctype callee_port
(byte thisport)

{ byte farport,tunnel;
end_idle: "handoff from box port";

to[farport]!thisport,upack,0
linked: do

:: to[farport]!thisport,other,tunnel
:: to[thisport]?eval(farport),other,tunnel
:: to[farport]!thisport,teardown,0; goto unlinking
:: to[thisport]?eval(farport),teardown,0;

to[farport]!thisport,downack,0; goto end_idle
od;

unlinking: do
:: to[thisport]?eval(farport),other,tunnel
:: to[thisport]?eval(farport),teardown,0;

to[farport]!thisport,downack,0
:: to[thisport]?eval(farport),downack,0; goto end_idle
od

}

Once the callee port has sent the upack, the call is established and is sym-
metric. ¿From their linked states onwards, the programs for caller and callee
ports are identical.

8.5 Chains of related calls (Nov 03)

Internal calls are usually set up and torn down in chain reactions. This section
concerns the treatment of internal calls that are related to each other by being
parts of the same chain. The primary goal of chaining several internal calls is
to make them look like one call to an external observer.

20

The first obligation of a box with respect to two chained calls is piecewise
setup: when a box accepts a setup signal, it should send the corresponding upack
signal, thus completing call setup, before it attempts to set up the next call in
the chain.

It is permissible to add extra fields to setup signals. Such fields can propagate
status information along chains of related calls, carrying information that might
arrive too late if it came in the form of separate status signals. The second
obligation of a box with respect to two chained calls is to propagate extra fields
from the incoming setup signal to the outgoing setup signal. This obligation
is satisfied automatically by the continuedSetupSignal and reversedSetupSignal
methods. Furthermore, the programming interface described in Section 5.3 gives
feature boxes access to extra status fields.

The third obligation of a box with respect to chained calls is piecewise tear-
down: when a box receives a teardown signal, it should send the corresponding
downack signal, thus completing call teardown, before it tears down the next
call in the chain.

Like setup signals, teardown signals can conceivably propagate useful status
information along a chain of related calls. Clearly such information cannot be
sent later. The fourth obligation of a box with respect to two chained calls
is to propagate extra fields from the incoming teardown signal to the outgoing
teardown signal.

There is no point to adding extra fields to upack or downack signals, so it
is not allowed. The futility follows directly from piecewise setup and teardown,
which ensure that the same acknowledgment signal cannot be propagated along
a chain of calls.

8.6 Call-level status signals (Jan 03)

Once a call has been set up, its signaling channel can be used to send status
signals in either direction. Signals referring to the call as a whole, rather than
to a media channel of it, have zero in their tunnel fields.

At the call level, there are four built-in status signals. Although each signal
is meaningful within the call in which it is observed, it is often generated by an
interface or feature box further down a chain of setup-related calls, and merely
propagated through the chain.

• The signal unknown indicates that the target address of the call does not
map to any interface box. The signal is usually generated by an error box.

• The signal avail indicates that the target of the call is available and the call
is deemed to be successful. The signal is often generated by an interface
box.

• The signal unavail indicates that the target of the call is not available.
The signal is often generated by an interface box.

• The signal none cancels the effect of any of the three previous signals on
a user interface. The signal is only generated by feature boxes.

21

Typically these signals travel from the callee port to the caller port of an
internal call. However, the various actions of feature boxes can undermine these
expectations. As a result, there are no built-in constraints on how many of these
signals there are in a usage, or where they travel within the usage.

Other special-purpose status signals can be added as needed. A status signal
can carry any set of fields whatsoever.

8.7 Properties of the call protocol (Dec 02)

Embedding The protocols for box ports and routers can be embedded in pro-
tocols that send and receive additional signals, provided that their other
functions do not interfere with the timely execution of the programs given
here. The additional signals might be useful for implementing or opti-
mizing DFC. Caller and callee ports, on the other hand, are specified
exhaustively. No component of a DFC network can send them signals,
except as described here.

Absence of deadlock The call protocol specified here cannot deadlock, as
verified by use of the Spin model checker [3]. Note that with the embedding
constraint above in force, the pattern matching imposed by the use of
eval(farport) is unnecessary. Note also that, to enjoy this property, a box
program must be faithful to it in three particulars:

1. The box is always able to read the input queue of its box port, except
for short intervals of time.

2. Whenever a caller or callee port is busy, the box is always able to
read its input queue, except for short intervals of time.

3. Whenever the box reads the input queue of a caller or callee port, it
can accept any signal the protocol says can be received in the current
port state.

A box that satisfies these three requirements is said to be input-enabled.

Reliable FIFO signaling The protocol provides reliable signaling between
the ports of a call. In other words, the sequence of other signals received
by the callee port during a call is exactly the sequence sent by the caller
port during the call. Also, the sequence of other signals received by the
caller port during a call is exactly the sequence sent by the callee port
during the call. This property also has been verified with the Spin model
checker.

The following table summarizes certain properties of the four functional
signal types of the call protocol. For each signal type, we show the possible
senders and receivers. The lower part of the table gives information about the
possible fields of these signals: all have required origin fields, all have tunnel
fields equal to zero, only setup signals have routing fields, and only some signals
can have additional status fields.

22

setup upack teardown downack

senders caller port, callee port caller port, caller port,
router callee port callee port

receivers router, caller port caller port, caller port,
box port callee port callee port

internal-Origin required required required required
tunnel 0 0 0 0
routing fields required forbidden forbidden forbidden
additional
status fields allowed forbidden allowed forbidden

Note that when a setup signal is being sent from a caller port to a router, its
internalOrigin field identifies the caller port. When the signal is forwarded by
the router to a box port, its internalOrigin field still identifies the caller port.

9 The media channel protocol (Nov 03)

9.1 Basic concepts (Dec 02)

A call can have any number of two-way channels of any medium. This makes it
necessary to add a protocol to open and close media channels explicitly, because
without it there would be no way to tell which media channels a call is using.
Each signal of type open carries a field medium, indicating the medium of the
channel being requested.

The new vocabulary of signals, encompassing the functional signals of both
the call and channel protocols, is:

mtype = { setup,upack,
open,oack,onack,ready,
status,
close,closeack,
teardown,downack }

The signals mentioned in the call protocol (see Section 8) as having type
other are now seen to be either functional signals of the media channel protocol
or status signals. The signals related to each media channel of a call travel
through their own tunnel of the signaling channel. Status signals can refer
either to a media channel or to the call as a whole.

The channel protocol is nested inside the call protocol, as will be explained.
To preserve the familiar structure of the call protocol, and the analogous struc-
ture of the channel protocol, we express them as distinct Promela processes.
These processes communicate through shared (paired) events, expressed in Promela
as reads and writes to buffers of zero capacity.

Since zero-buffered communication between the processes is synchronous,
the process decomposition does not affect the ordering of events at each port

23

of a call in any way. The process decomposition should neither be regarded as
part of the protocol, nor as a constraint on the implementation.

9.2 The augmented call protocol (Dec 02)

Of the programs in Section 8, only the caller-port and callee-port programs need
to change.

The caller-port program has two additional arguments for each possible chan-
nel; they are the buffers (declared elsewhere as having zero capacity) through
which a caller-port process communicates with the process performing the pro-
tocol for that channel.

proctype caller_port
(byte thisport; chan in1,out1,in2,out2,...)

{ byte farport;
mtype m;

end_idle: to[router]!thisport,setup,0;
to[thisport]?farport,upack,0;
in1!upack; in2!upack; ...;

linked: do
:: to[thisport]?eval(farport),status,0
:: to[thisport]?eval(farport),m,1; in1!m
:: to[thisport]?eval(farport),m,2; in2!m
:: ...
:: to[farport]!thisport,status,0
:: out1?m; to[farport]!thisport,m,1
:: out2?m; to[farport]!thisport,m,2
:: ...
:: to[farport]!thisport,teardown,0; goto unlinking
:: to[thisport]?eval(farport),teardown,0;

to[farport]!thisport,downack,0;
in1!downack; in2!downack; ...; goto end_idle

od;
unlinking: do

:: to[thisport]?eval(farport),status,0
:: to[thisport]?eval(farport),m,1; in1!m
:: to[thisport]?eval(farport),m,2; in2!m
:: ...
:: to[thisport]?eval(farport),teardown,0;

to[farport]!thisport,downack,0
:: to[thisport]?eval(farport),downack,0;

in1!downack; in2!downack; ...; goto end_idle
od

}

This program assumes that there is a separate channel process for each
possible media channel. In the requesting state, if a caller-port process receives

24

an upack signal through the call protocol, it also sends an upack signal to each
of these channel processes. This informs them that a call now exists. Note that
the signals in these local buffers are of type mtype; they have no need for origin
queues or tunnels.

In its linked state, the caller-port process can receive signals in channel
tunnels. Such a signal is forwarded immediately, through a shared event such
as in1!m, to the process performing the protocol for the appropriate channel.

In its linked state the process can also receive signals from a channel process,
intended to be sent out on the signaling channel of the call. They are received
through shared events such as out1?m. Such a signal is sent out immediately
on the signaling channel of the call, with the appropriate tunnel field.

When a call is completely finished, a caller-port process sends a downack
signal to each of its channel processes. This informs them that a call no longer
exists.

The callee-port process is augmented in similar ways.

proctype callee_port
(byte thisport; chan in1,out1,in2,out2,...)

{ byte farport;
mtype m;

end_idle: "handoff from box port";
to[farport]!thisport,upack,0;
in1!upack; in2!upack; ...;

linked: do
:: to[thisport]?eval(farport),status,0
:: to[thisport]?eval(farport),m,1; in1!m
:: to[thisport]?eval(farport),m,2; in2!m
:: ...
:: to[farport]!thisport,status,0
:: out1?m; to[farport]!thisport,m,1
:: out2?m; to[farport]!thisport,m,2
:: ...
:: to[farport]!thisport,teardown,0; goto unlinking
:: to[thisport]?eval(farport),teardown,0;

to[farport]!thisport,downack,0;
in1!downack; in2!downack; ...; goto end_idle

od;
unlinking: do

:: to[thisport]?eval(farport),status,0
:: to[thisport]?eval(farport),m,1; in1!m
:: to[thisport]?eval(farport),m,2; in2!m
:: ...
:: to[thisport]?eval(farport),teardown,0;

to[farport]!thisport,downack,0
:: to[thisport]?eval(farport),downack,0;

in1!downack; in2!downack; ...; goto end_idle

25

od
}

9.3 Channel identifiers (Jun 01)

Within the scope of an internal call, any number of media channels can be
opened and closed. If a channel identifier (tunnel value) is reused within a call,
it could conceivably cause subtle race conditions in the implementation.

It would also be a problem if the two ports of an internal call both attempted
to open a media channel at approximately the same time, using the same channel
identifier. Although this problem can be resolved, it causes extra complexity.

Both problems are avoided completely by rules governing a box’s choice of
channel identifiers.

• No channel identifier can be reused within an internal call.

• An open signal sent by a caller port must use an odd channel identifier.
An open signal sent by a callee port must use an even channel identifier.

9.4 The channel protocol (Nov 03)

The following program controls a single channel in a single call. It takes the
initiative in opening the channel,

proctype active_channel(chan in,out)
{
end_nocall: in?upack;

if
:: out!open; goto opening
:: in?downack; goto end_call
fi;

opening: if
:: in?oack; goto oacked
:: in?onack; goto end_chan
:: out!close; goto closing
:: in?downack; goto end_call
fi;

oacked: if
:: out!ready; goto readying
:: out!close; goto closing
:: in?close; goto closed
:: in?downack; goto end_call
fi;

readying: do
:: in?status
:: out!status
:: out!close; goto closing

26

:: in?close; goto closed
:: in?downack; goto end_call
od;

closing: do
:: in?oack
:: in?onack
:: in?status
:: in?close; goto closing2
:: in?closeack; goto end_chan
:: in?downack; goto end_call
od;

closing2: if
:: out!closeack; goto closing3
:: in?closeack; goto end_chan
:: in?downack; goto end_call
fi;

closing3: if
:: in?closeack; goto end_chan
:: in?downack; goto end_call
fi;

closed: if
:: out!closeack; goto end_chan
:: in?downack; goto end_call
fi;

end_chan: in?downack;
end_call: skip
}

Note that call teardown automatically closes an open channel.
The fact that there are more closing states in the channel protocol than

unlinking states in the call protocol does not mean that they are fundamentally
different. It is simply because the “master” call protocol can have longer unin-
terruptable sequences of events than the “slave” channel protocol can without
causing deadlock.

The following program also controls a single channel in a single call. It
receives a channel open rather than sending one.

proctype passive_channel(chan in,out)
{
end_nocall: in?upack;

if
:: in?open; goto opened
:: in?downack; goto end_call
fi;

opened: if
:: out!oack; goto oacking

27

:: out!onack; goto end_chan
:: in?close; goto closed
:: in?downack; goto end_call
fi;

oacking: if
:: in?ready; goto readied
:: in?close; goto closed
:: out!close; goto closing
:: in?downack; goto end_call
fi;

readied: do
:: in?status
:: out!status
:: out!close; goto closing
:: in?close; goto closed
:: in?downack; goto end_call
od;

closing: do
:: in?status
:: in?close; goto closing2
:: in?closeack; goto end_chan
:: in?downack; goto end_call
od;

closing2: if
:: out!closeack; goto closing3
:: in?closeack; goto end_chan
:: in?downack; goto end_call
fi;

closing3: if
:: in?closeack; goto end_chan
:: in?downack; goto end_call
fi;

closed: if
:: out!closeack; goto end_chan
:: in?downack; goto end_call
fi;

end_chan: if
:: in?downack; goto end_call
:: in?close; goto closed
fi;

end_call: skip
}

28

9.5 Synchronization of signaling and media (Aug 01)

The channel protocol provides a means by which boxes can control the media
streams they need, and can learn the status of those media streams. The media
streams themselves may be implemented quite separately.

Usually an endpoint of a media stream is an interface box. However, a
feature box can also act, either temporarily or permanently, as an endpoint of
a media stream. For example, a Call Waiting box must switch voice channels,
and must therefore act as an endpoint for all its voice channels.

When a box receives an open signal and intends to act as a media endpoint
for the requested channel, it must first establish the requested media channel,
then respond to the open with oack. Sending oack means that the media channel
exists and is ready to transmit in both directions, at least as far as this box is
capable of knowing.

However, having sent an oack, the box cannot simply begin to transmit
media. That media could be lost because it could outrun the oack in reaching
the other media endpoint.

When a box receives an oack signal and intends to act as the media endpoint
for that channel, it responds to the oack with a ready signal. It can then begin
to transmit, because it knows the media channel exists end-to-end. When the
opposite media endpoint, the one that sent the oack, receives ready, it also knows
that the media channel exists end-to-end, and can also begin to transmit.

A box transparent to a media channel propagates an incoming open signal
from one call as an outgoing open signal in a corresponding call, but does not
respond to it with oack or onack until it has received one of those signals from
the outgoing side.

If it receives an onack from the outgoing side, it merely propagates this
signal on the incoming side. If it receives an oack from the outgoing side, on the
other hand, it must both link the two channel terminations (see Section 11.2)
and propagate this signal on the incoming side.

Thus an open signal originates at a true media endpoint, as does the answer-
ing oack or onack signal. We say that media channels are opened end-to-end, in
contrast to the piecewise setup of a chain of related calls.

A media channel must be destroyed before a closeack signal, or a downack
signal subsuming it, is sent. Channels are closed piecewise. This makes sense
from a signaling perspective because most channels are closed implicitly by the
tearing down of the call within which they exist. It also makes sense from a
media stream perspective because an end-to-end media stream can be destroyed
by destroying any segment of it. This is in contrast to establishment of an end-
to-end media stream, which is not complete until all segments are established.

9.6 Channel-level status signals (Dec 02)

Once a channel has been opened, its signaling tunnel can be used to send status
signals in either direction.

29

There is a long-established convention in telephony that a human user is
not alerted by an incoming call until a media channel between his device and
another media endpoint is fully ready. The protocol enforces this convention at
the channel level, which has four built-in status signals.

• The signal wait indicates that an attempt is being made to enable human
communication on the requested medium. Typically the signal is gener-
ated by an interface box. The attempt might involve initializing a device
or device capability, alerting a person to come to a device, or asking a
person’s permission to communicate on that medium.

• The signal accept indicates that communication on the requested medium
has been accepted. It is often generated by an interface box, because a
person has indicated readiness to communicate. It can also be generated
by a feature box, for example so that the box can use the medium as a
user interface.

• The signal reject indicates that a communication on the requested medium
has been rejected. It is often generated by an interface box.

• The signal none cancels the effect of any of the three previous signals on
a user interface. It is only generated by feature boxes.

As with the built-in status signals of the call protocol, feature boxes can
scramble the expected appearance and order of these signals. As a result, there
are no built-in constraints on how many of these signals there are in a usage, or
where they travel within the usage.

Other special-purpose status signals can be added at the channel level as
needed. A status signal can carry any set of fields whatsoever.

9.7 Properties of the channel protocol (Dec 02)

The channel protocol does not introduce deadlock, nor does it interfere with
reliable signaling.

The following table summarizes fields of the six functional signal types of
the channel protocol.

open oack onack ready close closeack

internal- required required required required required required
Origin
tunnel natural natural natural natural natural natural
medium required forbidden forbidden forbidden forbidden forbidden
additional
status allowed allowed allowed allowed allowed forbidden
fields

30

10 Behavior of line and trunk interface boxes
(Jan 03)

10.1 Ports on interface boxes (Dec 02)

In all of the Promela programs in this manual, the state of a port is only defined
(named) when it is waiting for input. A line interface box can have at most one
internal call that is in the linked state. If the box has such a call and receives a
setup signal, it must respond with the sequence upack; unavail; teardown. The
port on which the new call is received passes directly from the end idle state to
the unlinking state.

A trunk interface box can have many DFC ports in the linked state. ¿From
the perspective of a DFC network, these ports are interchangeable and indepen-
dent.

If a DFC router routes a call to an interface box that is busy, when there
is an equally suitable interface box that is not busy, there is no recourse. This
problem is especially bad with trunk interfaces because of trunk glare1. Glare
can have the effect of making a trunk busy after it was put to use in the belief
that it was idle!

This problem can be eliminated by aggregating interoperation facilities into
large trunk interface boxes with many DFC ports. DFC routes to the trunk
interface box, which accepts the call on any available port. A large trunk in-
terface box can resolve glare internally and autonomously by changing external
channels (trunks) when necessary.

10.2 Interface protocols (Jan 03)

An interface box that places an internal call must use the method newSetupSig-
nal. If the interface box supplies a dialed string, it need not supply a target
address, as the target address will be extracted from the dialed string.

Just as a line interface box interfaces to a device, we can think of a trunk
interface box as interfacing to a device, even though that device must be reached
through another network.

If an interface box receives a setup signal at a time when it has no DFC port
in the linked state, and it finds that the device it interfaces to is unavailable, it
follows the upack signal with the sequence unavail; teardown.

If a line interface box receives an open signal for a medium that its device
cannot handle, then it responds with an onack. If a line interface box receives
an open signal for a medium that its device can handle, then it responds with
an oack.

After receiving a ready, if a line interface knows immediately whether com-
munication on that medium is acceptable, for example because the device is

1Trunk glare occurs when the two switches at the two ends of a trunk both seize the trunk
for an outgoing call, thinking that it is idle. Both switches are aware of the condition, because
both receive setup messages when they expected setup acknowledgments. Typically a static
priority scheme is used to choose a winner, and the loser retracts its setup.

31

fully automatic, then the line interface follows ready immediately with accept
or reject. If the line interface does not know immediately, which is the most
common situation, then the line interface follows ready immediately with wait.
It proceeds with the alerting or whatever else is necessary, and follows with
accept or reject whenever a human responds.

An interface box should send an avail signal only when the incoming call
is deemed truly successful. In the case of a POTS-like device and interface, it
would send accept; avail when a user answers the telephone.

10.3 User-interface signaling (Dec 02)

An interface box translates between the DFC protocol and its line or trunk pro-
tocol to support the user interface of a device. The crudest, and therefore most
challenging, user interfaces are those that use the voice medium for signaling.

An interface box with voice signaling reacts to receipt of an unknown, un-
avail, wait, or reject signal by generating a tone (or doing whatever is necessary
to cause the tone to be generated). It reacts to receipt of an avail or none signal
at the call level by silencing any unknown or unavail tone. It reacts to receipt
of an accept or none signal on the voice channel by silencing any wait or reject
tone.

At the channel level, any time a line interface box is in the readied state as
defined in Section 9.4, media can flow in both directions, and should be allowed
to reach the endpoint device. This is necessary because many feature boxes
use media channels for user-interface signaling. Feature behavior and feature
interactions must coordinate among tone generation in an interface box and
media signaling in various feature boxes.

Often it is desirable to prevent end-to-end media flow, for example until the
service provider is sure of being paid for it. Such blockage must be performed by
a feature box rather than an interface box, because of the need for media-based
user-interface signaling.

Users control features by causing their devices to generate events of some
kind. These events are translated by interface boxes into DFC status signals,
which may be sent at the call level or the channel level.

Many status signals for feature control are specific to particular devices
and/or features. These are valuable because they make it possible to exploit
sophisticated devices, and to provide rich user interfaces for complex feature
sets.

On the other hand, it is also important to have a set of universal signals
that can be generated by any device. Feature boxes controlled by these signals
can be used in any context. This purpose is served by the built-in status signal
type dtmf, which has a symbol field indicating one of the twelve DTMF symbols.
Status signals of type dtmf are always sent in the tunnel of a voice channel.

If a line interface represents a device, such as an analog black telephone,
that can only generate these signals in-band, then the line interface must detect
them and duplicate the information in the form of out-of-band dtmf signals.

32

11 Media processing (Jan 03)

11.1 Media (Mar 01)

Each DFC network has a fixed set of media. A medium is a distinct and global
form of communication, as seen from the user’s perspective. Any endpoint for
a medium can communicate with any other endpoint for that medium.

Although the most commonly discussed media for telecommunications are
voice, video, text, images, and high-fidelity sound, a DFC network is not limited
to these, nor need it offer all of them.

11.2 Links (Mar 01)

There are two kinds of media processing.
Transmission, muting, switching, replicating, and summing 2 of media streams

are all easy from the description perspective because they can be specified stat-
ically and uniformly, simply by the state of an intra-box connection relation.

Each media channel in an internal call has an identifier and two channel
terminations, one at each port of the call. A channel termination is identified
by a (port,channel-identifier) pair.

The media-processing state of a box is described as a set of links. Each
link is a unidirectional media connection between two channel terminations; the
channel terminations must have distinct ports on the same box. The links whose
sink is a channel termination (p,c) specify those channel terminations at other
ports of the same box whose media streams arriving as input to the box are to
be summed and sent as output from the box at the channel termination (p,c).

For example, consider a box with ports p1, p2, and p3 at which voice channels
c1, c2, and c3 respectively are open. The set of links

{ ((p2,c2), (p1,c1)), ((p3,c3), (p1,c1)), ((p1,c1), (p2,c2)) }
specifies that the output from (p1,c1) is the sum of the inputs at (p2,c2) and
(p3,c3), the output at (p2,c2) is just the input at (p1,c1), and there is no output
at (p3,c3). Thus (p1,c1) and (p2,c2) have two-way voice communication; (p1,c1)
can also hear (p3,c3), while (p3,c3) can hear nothing.

11.3 Resources and resource interface boxes (Jan 03)

In contrast to the previously mentioned forms of media processing, recording,
playing, mixing, monitoring (pattern recognition), and media conversion are
much harder. They require both control (“start recording”) and status (“an-
nouncement completed”) events. They require many control arguments such
as announcement identifiers, recognition grammars, and volume levels. Finally,
there are many different devices for performing these functions, each with its
own programming interface. A box programmer who needs control-intensive

2Summing is a simple form of mixing, with no selective volume control, and possibly a
limit on the number of channels involved.

33

media processing must know what kind of device is being used to implement
it, and must program his feature box using the programming interface of that
device.

A device that performs control-intensive media processing is visible in the
DFC architecture as a resource, and is joined to a DFC network by means of a
resource interface box.

RAddress is the set of addresses used by box programmers to reach resources.
A member of RAddress names a type of resource rather than an individual re-
source. The type corresponds, in turn, to a fixed programming interface defined
in terms of status signals.

The address mapping RMap maps a member of RAddress to some RIBox of
the appropriate type. The mapping from resource addresses to resource interface
boxes is many-to-many. A resource address can map to many interface boxes
so that routing can choose resources in optimal locations. A resource interface
box that implements several programming interfaces can have several resource
addresses, one for each programming interface.

Like a trunk interface box, a resource interface box can have one or more
(depending on the size and capabilities of the resource itself) DFC ports in the
linked state.

Resource interface boxes do not place internal calls.
Resource interface boxes use the built-in call-level status signals in the usual

way. Whether they use the built-in channel-level status signals depends on how
their programming interface is defined.

Glossary

This glossary defines briefly the main terms used in The DFC Manual, and
shows for each one the chief sections of the manual where it is explained or
discussed.

AAlphabet The alphabet of symbols used for addresses. See Section 2.4.

accept signal A status signal indicating that communication on a media chan-
nel has been accepted. See Section 9.6, Section 10.2, Section 10.3.

address The set of syntactically correct identifiers in a DFC network, or a
member of that set. See Section 2.3, Section 2.5, Section 3.5, Section 5,
Section 6.

Alloy A formal language [4] used in this manual for describing data structures
and data operations. See Section 1.3.

AString A string containing symbols from the address alphabet AAlphabet.
See Section 2.4.

avail signal A status signal indicating that the target of a call is available and
the call is deemed successful. See Section 8.6, Section 10.2, Section 10.3.

34

bound feature box (BFBox) A feature box that is persistent, unique, and
permanently associated with a subscribing address. See Section 2.1, Sec-
tion 2.6, Section 6.5.

box Boxes are the primary modules and components in DFC. A box is a concur-
rent process, and performs either feature functions or interface functions.
Boxes are connected by internal calls to form usages.

box address The subscribing address on whose behalf a feature box is created
and/or assembled into a usage. See Section 2.6, Section 6.5.

box type The type of a box corresponds to a box program; once created, a box
is an instance of the program corresponding to its type. See Section 2.1,
Section 2.2, Section 3, Section 6.5.

call protocol The protocol governing the setup, use and teardown of internal
calls between boxes. See Section 8.

callee port protocol A protocol governing the behavior of a port in an in-
ternal call, applicable when the port is placing the call. See Section 8.4,
Section 9.2.

caller port protocol A protocol governing the behavior of a port in an inter-
nal call, applicable when the port is receiving the call. See Section 8.3,
Section 9.2.

chain Short for “a set of calls set up or torn down in a chain reaction.” See
Section 8.5.

channel Short for “media channel.”

channel identifier A natural number identifying a media channel and its cor-
responding tunnel within an internal call. See Section 9.1, Section 9.3.

channel termination The termination of a media channel at a port. See
Section 11.2.

close signal A signal of the media channel protocol that closes a channel. See
Section 9.

closeack signal A signal of the media protocol that acknowledges closing of a
channel. See Section 9.

continuedSetupSignal A method used by a box to create a setup signal for
an outgoing internal call based on a previously received setup signal of an
incoming internal call. See Section 5.5.

customer The owner of one or more addresses. See Section 7.

customer-partitioned data Operational data that is partitioned by customer.
See Section 7.

35

device A physical device such as a telephone, computer, or hardware signal
processor that is attached to a DFC network by a line or resource interface
box.

dialed (dld) A field of a setup signal containing the string “dialed” by the
calling user at a device, if any. See Section 5.2, Section 5.4, Section 6.2.

downack signal A signal of the call protocol acknowledging a teardown signal.
See Section 8.

dtmf signal A channel-level status signal that transmits a DTMF symbol. See
Section 10.3.

embeddedAddress A function used by the router to extract an address from
a dialed string. See Section 6.2.

end-to-end This adjective refers to a connection path between two interface
boxes, or to aspects of the DFC protocol that emphasize the role of in-
terface boxes and de-emphasize the role of feature boxes. See Section 5.6,
Section 6.6, Section 9.5.

error box (EBox) A box that handles an addressing error. See Section 2.1,
Section 6.5.

feature An incremental unit of functionality in a DFC network. See Section 3,
Section 7.

feature box (FBox) A box that provides the full or partial functionality of a
feature. See Section 2.1, Section 3.

feature box type (FBoxType) These partition the set of all feature boxes.
See Section 2.2.

feature-partitioned data Operational data that is partitioned by feature.
See Section 7.

free feature box (FFBox) A feature box of a fungible type, that is, of a type
of which any instance may be substituted for any other. See Section 2.1,
Section 2.6, Section 6.5.

input-enabled A box is input-enabled if it is always (except for short intervals
of time) able to read the input queue at each of its ports and to process
any input signal permitted by the relevant protocol and port state. See
Section 8.7.

interface box (IBox) A box that provides an interface to a line, trunk, or
resource. See Section 2.1, Section 2.5, Section 10, Section 11.3.

internal call A featureless, point-to-point call with one two-way signaling chan-
nel and any number of media channels. Internal calls connect boxes to
form usages, so they are one of the two major structures in DFC.

36

LAddress The set of addresses that uniquely identify line interface boxes. See
Section 2.3, Section 2.5, Section 6.5.

line interface box (LIBox) An interface box connecting a line and telecom-
munication device to a DFC network. See Section 2.1, Section 2.5, Sec-
tion 6.5, Section 10.

link A one-way connection between two media channel terminations in one box.
See Section 9.5, Section 11.2.

LMap The mapping from addresses to line interface boxes. See Section 2.5,
Section 6.5.

MAddress A mobile address that has no permanent association with any in-
terface box, but can subscribe to features. See Section 2.3, Section 2.5,
Section 6.5.

medium A class of transmissible data, for example, voice, video, or text. See
Section 9, Section 11.

media channel A channel by which media may be transmitted in an internal
call. See Section 9, Section 11.

media channel protocol The protocol governing the opening and closing of
media channels. See Section 9.

mixing Combining an arbitrary number of voice media streams in specified rel-
ative volumes. Functionally more complex than summing. See Section 11.

mtype In a Promela specification, the set of all signal types.

muting Interrupting the transmission of a media stream, possibly in only one
direction, without closing the channel. See Section 11.

newSetupSignal A method used by a box to create a new setup signal. See
Section 5.4.

none signal This signal is unique in being used at both the call and channel
levels. It is a built-in status signal that cancels the effect of any previous
built-in status signal on a user interface. See Section 8.6, Section 9.6.

noAddr A distinguished value of any address field or variable indicating the
absence of an address. See Section 2.3.

noString A distinguished value of any string field or variable indicating the
absence of a string. See Section 2.4.

oack signal A signal of the media channel protocol indicating that a request for
a media channel has been received by an endpoint, and that the endpoint
is capable of that medium. See Section 9, Section 10.2,

37

onack signal A signal of the media channel protocol indicating that a request
for a media channel has been received by an endpoint, and that the end-
point is not capable of that medium. See Section 9.

open signal A signal of the media channel protocol requesting a new media
channel. See Section 9.

operational data Persistent data that can be read and written by feature
boxes. See Section 7.

outer A field of a setup signal indicating a previous source address in a source
region, used for authentication. See Section 5, Section 6.4.

piecewise setup A discipline of setting up an end-to-end connection by com-
pleting the setup of each segment without waiting for completion of the
setup of either neighboring segment. See Section 8.5.

placing A field of a setup signal specifying the type of the box attempting to
place a call with this signal. See Section 5.2, Section 5.6.

port A locus within a box for sending and receiving signals, with its own inde-
pendent signal queue. See Section 8.

precedence A constraint on the order in which boxes may be included in a
zone of a usage. See Section 3.4, Section 3.5.

Promela A formal language [3] used in this manual for describing protocols.
See Section 1.3, Section 8.1.

providesFeature The mapping from a feature box type to the feature it im-
plements or partially implements. See Section 3.2, Section 7.

RAddress The set of identifiers of resource types. See Section 2.3, Section 2.5,
Section 6.5.

ready signal A signal of the media protocol indicating that an end-to-end
media connection has been established. See Section 9, Section 10.2, Sec-
tion 10.3.

region Feature boxes are routed to in either the source region or target region.
The source region contains feature boxes subscribed to by a source address
in its role as caller; the target region contains feature boxes subscribed to
by a target address in its role as callee. Also, the regn field of a setup
signal indicates which region routing is currently concerned with. See
Section 3.1, Section 3.3, Section 3.4, Section 3.5, Section 5.2, Section 6.

reject signal A status signal indicating that communication on a media chan-
nel has been rejected. See Section 9.6, Section 10.2, Section 10.3.

38

resource A hardware or software device capable of specialized media signal
processing, such as recording, playing, and voice recognition. See Sec-
tion 11.3.

resource interface box (RIBox) An interface box connecting a media-processing
resource to a DFC network. See Section 2.1, Section 2.5, Section 6.5, Sec-
tion 11.3.

reversedSetupSignal A method used by a box to create a setup signal for
a new outgoing internal call based on one previously used to place an
outgoing internal call. The created signal continues that call, but in the
opposite direction. See Section 5.6.

reversible box type A box type that is always subscribed to in both source
and target regions. Only reversible boxes can use the reversedSetupSignal
method. See Section 3.2, Section 3.3, Section 3.4, Section 3.5, Section 5.6,
Section 6.3.

RMap The mapping from addresses to resource interface boxes. See Sec-
tion 2.5, Section 6.5, Section 11.3.

route The field of a setup signal containing the expected route—a sequence of
feature boxes—to be taken in constructing the usage. It can also contain a
ZoneTag, which is a placeholder used before zone expansion. See Section 5,
Section 6.

router protocol The protocol governing the behavior of a DFC router in ex-
changing signals with boxes. See Section 8.2.

router A component of a DFC network that sets up internal calls between
boxes by modifying and transmitting setup signals. A router is an imple-
mentation of the DFC routing algorithm. See Section 6, Section 8.2.

SAlphabet The alphabet of symbols used for signaling. See Section 2.4.

setup signal A signal of the call protocol requesting the setup of a call. It
is sent by a port of one box, via the router, to another box. A usage
is created by chains of related setup signals. See Section 5, Section 6,
Section 8.

signal A message sent or received as part of the DFC protocol. See Section 4,
Section 8, Section 9.

signal queue A queue of signals waiting to be processed by a box, by a box
port, or by a DFC router. See Section 8.

source (src) A field of a setup signal containing an address representing the
caller. See Section 5, Section 6.

SString A sequence of symbols from the signaling alphabet SAlphabet. See
Section 2.4.

39

status signal A signal of the call or media channel protocol other than the ba-
sic signals for setting up, tearing down, and confirming the call or channel
connection.

subscriber A customer of a DFC network who subscribes to features at an
LAddress or MAddress. See Section 3.5, Section 7.

subscription An association between an address and a feature box type. The
source subscriptions of an address determine which feature boxes are in its
source zones, and its target subscriptions determine which feature boxes
are in its target zones. See Section 3.3, Section 3.5, Section 6.3.

summing Combining a small number of voice media streams in equal volumes.
Functionally simpler than mixing. See Section 11.

TAddress The set of addresses that identify lines on another network, acces-
sible through a trunk interface. See Section 2.3, Section 2.5, Section 6.5.

target (trg) A field of a setup signal containing an address representing the
callee. See Section 5, Section 6.

teardown signal A signal of the call protocol that tears down the call. See
Section 8.

trunk interface box (TIBox) An interface box acting as a proxy for multi-
ple line interfaces on an adjacent network. See Section 2.1, Section 2.5,
Section 6.5, Section 10.

TMap The mapping from addresses to trunk interface boxes. See Section 2.5,
Section 6.5, Section 11.3.

trunk glare A condition in which the two switches at the ends of a trunk both
sieze the trunk for an outgoing call. See Section 10.

tunnel Each signal has a tunnel field. If the field is zero, the signal refers to
the call as a whole. Otherwise, the tunnel value refers to a media channel
of the call, and the signal is part of the media channel protocol for that
channel. See Section 8.1, Section 9.1, Section 9.3.

unavail signal A status signal indicating that the target of a call is not avail-
able. See Section 8.6, Section 10.2, Section 10.3.

unknown signal A status signal indicating that the target address of a call
does not map to an interface box. See Section 8.6.

upack signal A signal sent by a box indicating that a setup signal has been
received, a port has been allocated, and the requested internal call has
been established. See Section 8.

40

usage A set of boxes and internal calls forming a maximal connected graph.
Usages can be identified in a snapshot of a running DFC network, but this
identity does not persist over time, because usages can split and merge.
All external requests for telecommunication service are satisfied by usages.

wait signal A status signal indicating that an endpoint is attempting to en-
able communication on a medium, usually by alerting. See Section 9.6,
Section 10.2, Section 10.3.

zone A subsequence of feature boxes in a usage, all of which are subscribed
to by the same address. In simple usages, a zone is either a subsequence
of a source region (a source zone) or a subsequence of a target region (a
target zone). Also, for each address there are srcZone and trgZone records
presenting the box types subscribed to by the address in the two regions, in
an order compatible with precedence constraints. Section 3.1, Section 3.3,
Section 3.4, Section 3.5, Section 6.

ZoneTag An enumerated set containing the values whole and suffix. When
a zone tag is the value of the route field of a setup signal, it must be
replaced by all or part of a srcZone or trgZone. See Section 5.2, Section 5.4,
Section 5.5, Section 5.6, Section 6.3.

References

[1] Gregory W. Bond, Eric Cheung, K. Hal Purdy, Pamela Zave, and J.
Christopher Ramming. An open architecture for next-generation telecom-
munication service. ACM Transactions on Internet Technology IV(1),
February 2004, to appear. 1

[2] The DFC Web site:
http://www.research.att.com/projects/dfc 1, 41

[3] Gerard J. Holzmann. Design and validation of protocols: A tutorial. Com-
puter Networks and ISDN Systems XXV:981-1017, 1993. 2, 22, 38

[4] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity
mechanism. In Proceedings of the Ninth ACM SIGSOFT International
Symposium on the Foundations of Software Engineering and the Eighth
European Software Engineering Conference, pages 62-73. ACM, 2001. 2,
34

[5] Michael Jackson and Pamela Zave. Distributed feature composition: A
virtual architecture for telecommunications services. IEEE Transactions
on Software Engineering XXIV(10):831-847, October 1998. 1, 18

[6] Pamela Zave. Ideal connection paths in DFC. AT&T Research Technical
Report, 2003, on [2]. 1, 11, 14, 16

41

[7] Pamela Zave and Michael Jackson. DFC modifications I (Version 2): Rout-
ing extensions. AT&T Technical Memorandum HA1640000-000128-4TM,
January 2000. 1

[8] Pamela Zave and Michael Jackson. DFC modifications II: Protocol exten-
sions. AT&T Technical Memorandum HA1640000-991119-16TM, Novem-
ber 1999. 1

42

	Introduction (Nov 03)
	What is DFC? (Nov 03)
	Scope of DFC (Nov 03)
	Notation (Nov 03)

	Boxes, box types, and addresses (Nov 03)
	Boxes (May 01)
	Box types (Nov 03)
	Addresses (Nov 03)
	Alphabets (May 01)
	Address mappings (Nov 03)
	Feature box addresses (Nov 03)

	Features and subscriptions (Nov 03)
	Regions and zones (Nov 03)
	Features and feature box types (Nov 03)
	Routing choices (Nov 03)
	Precedence (Nov 03)
	Subscriptions (Nov 03)

	Signals (Nov 03)
	How boxes affect routing (Nov 03)
	Basic concepts (May 01)
	The setup signal (Nov 03)
	Access to setup signals by boxes (Nov 03)
	New setup signals (Nov 03)
	Continued setup signals (Nov 03)
	Reversed setup signals (Nov 03)

	The routing algorithm (Nov 03)
	Basic concepts (Nov 03)
	Step 1: Extract target (Nov 03)
	Step 2: Expand zone (Nov 03)
	Step 3: Advance region (Nov 03)
	Step 4: Choose callee box (Nov 03)
	Properties of DFC routing (Nov 03)

	Operational data (Nov 03)
	The call protocol (Nov 03)
	Basic concepts (Nov 03)
	Router protocol (Mar 01)
	Caller port protocol (Dec 02)
	Callee port protocol (Dec 02)
	Chains of related calls (Nov 03)
	Call-level status signals (Jan 03)
	Properties of the call protocol (Dec 02)

	The media channel protocol (Nov 03)
	Basic concepts (Dec 02)
	The augmented call protocol (Dec 02)
	Channel identifiers (Jun 01)
	The channel protocol (Nov 03)
	Synchronization of signaling and media (Aug 01)
	Channel-level status signals (Dec 02)
	Properties of the channel protocol (Dec 02)

	Behavior of line and trunk interface boxes (Jan 03)
	Ports on interface boxes (Dec 02)
	Interface protocols (Jan 03)
	User-interface signaling (Dec 02)

	Media processing (Jan 03)
	Media (Mar 01)
	Links (Mar 01)
	Resources and resource interface boxes (Jan 03)

	Glossary
	References

