
A Theory of Networks:
In the Beginning . . .

Pamela ZAVE

AT&T Laboratories—Research, New Jersey, USA

Abstract. The geomorphic view of networking is a modular theory of

contemporary networking, which is currently being developed. This pa-

per presents the basic components and ideas of this theory in the form
of a genesis story—what is needed to build the simplest possible net-

work, and why other structures must be added as the network grows

bigger and more complex. The story ends with the contemporary Inter-
net, which is vastly more complex than what the classic Internet archi-

tecture describes. The paper also summarizes work on formalizing the
theory and applying it to solve real problems.

Keywords. Internet, network architecture, network protocols, network

verification, Alloy, Spin

1. Introduction

The original Internet architecture was intended to empower users and encourage
innovation [3], and it has succeeded beyond most people’s wildest dreams.

As a result of this success, the Internet has outgrown its original architecture,
and does not meet current needs in many areas. The networking community has
recognized serious deficiencies concerning security, reliability, mobility, quality of
service, and resource management. It is proving difficult to achieve the desired
convergence of data, telephone, and broadcast networks, and difficult to balance
the needs of all of the Internet’s stakeholders [4,6,8,14].

The classic Internet architecture has five layers, as shown in Figure 1. Today
requirements not met by this architecture are satisfied by adding many ad hoc
intermediate layers of virtual networking, as described by Spatscheck [15]. To
illustrate these ad hoc layers, Figure 2 shows the headers in a typical packet
transmitted across the AT&T backbone.1 The problem with these ad hoc layers
is that each is typically designed and understood in isolation. There are many
unnecessary limitations and complications. The overall network behavior when
new layers are run amongst old layers is neither understood nor predictable.

In the future, the Internet will need to support an even wider variety of
applications, stakeholders, resources, endpoint devices, communication functions,
service guarantees, and resource policies than it does today. Consequently, from

1Layers and headers are related but not in one-to-one correspondence. The relationships

among Figure 1, Figure 2, and the theory of networks are explained in Section 2.7.



Application
Transport
Network

Link
Physical

Figure 1. The classic Internet architecture.

Application
HTTP

TCP
IP

IPsec
IP

GTP
UDP

IP
MPLS

MPLS
Ethernet

Figure 2. Headers in a packet in the AT&T backbone.

applications and middleware at the top of the Internet stack all the way down to
the physical resources, there is a need for more elaborate technology, with both
flexibility and predictability.

One approach to achieving both flexibility and predictability is composition-
ality. The basic idea of a compositional theory is well-known in formal methods.
The theory defines the parts of a basic module. Through axioms and theorems, it
expresses their semantics and other properties. The theory also defines how mod-
ules can be composed to make more complex assemblies. Axioms and theorems
also provide the semantics and properties of module compositions. In this way,
individual modules can be customized for flexibility and diversity of goals, while
the compositional theory makes it possible to reason uniformly about assemblies
of them.

Contemporary networking is badly in need of these benefits. In addition, al-
though real networks are vastly more complex than any theory can be, composi-
tional thinking would benefit the practice of networking in two important ways:

• It would help make capabilities synergistic, in the sense that the same user
or traffic can benefit from all of them.

• It would help make capabilities non-interfering, in the sense that one does
not break or compromise another.

In today’s networks, new capabilities must be hemmed in carefully, because they
can only work on particular traffic or within a particular region.



interface
or

member

interface
or

memberlink

machine machine

Figure 3. The simplest network.

The key to a compositional theory of networks was given to us by John Day,
who showed that there are patterns that appear in network architectures at many
levels for many different purposes [5]. Jennifer Rexford and I have been developing
and extending these key insights, with the goal of producing a comprehensive,
formal, and compositional theory of networks. Some of the practical uses for such
a theory are described in [19].

Compared to well-known successful theories, and even successful theories of
aspects of networking (for example [7]), the theory of networks has many “moving
parts.” On first exposure, people often have a hard time understanding why there
are so many parts, and believing that these are necessary the correct choices. The
theory is convincing after one has used it to describe dozens of real and varied
examples, but this experience is not available to a general audience.

In hopes of answering some of the many questions that arise, Section 2 ex-
plains the basic parts and their purposes starting from the simplest possible net-
work. This section is also a gentle introduction to the theory. Section 3 is a note
about the generality of the theory.

The remaining sections provide an overview of our progress on the theory so
far. Section 4 discusses formalization, while Section 5 summarizes results of the
theory.

2. The genesis of networking

2.1. The simplest network

Suppose that we have two computers, and we wish them to communicate (Fig-
ure 3). There must be a physical medium through which they can send digital
messages to each other, for example a wire or radio channel. In the figure, each
computer is called a machine, and the physical medium that connects them is a
link.

Two other ingredients are needed to make this simple network function. There
must be a link protocol, which is a set of conventions about how digital messages
are represented on the physical medium, and how they are sent and received.
Each machine must have an interface, which is a software or hardware process.
The interface communicates with the rest of the machine through the machine’s
operating system, sending and receiving messages on the machine’s behalf. The
interface follows all the rules of the link protocol in formatting, transmitting,
accepting, and interpreting messages.



A B

C D E

Figure 4. A network with names and forwarding. Machines are not shown.

The bold parts of Figure 3 form an elementary network. Henceforth an inter-
face will be called a member of its network.

2.2. The forwarding protocol

As a network, Figure 3 is small. More realistically, we would have a network with
many members representing many machines, and many links between pairs of
them. All the links would use the same link protocol, which all the members would
follow.

If the network is large, it may be impractical to have a link between every
pair of members. More realistically, there would be enough links to allow a path
of one or more links between each pair of members, as in Figure 4.

Now the problem is to deliver messages to their destinations over paths of
links. The universal solution to this problem is:

• Each member has a unique name, which has a digital representation.
• The name of the destination of the message is added to the message, in a

data structure called the header.
• When a message arrives at a member, and the destination of the message

is not the name of that member, the member forwards the message toward
its destination on another link.

To implement this solution, the network state must include routes, which tell
the members where to forward messages so that they reach their destinations. In
a network, routes is a shared, distributed data structure. It can be formalized as
a relation or table with four columns of types name, link, member, link. If a tuple
(destName, inLink, forwarder, outLink) is in the relation, then a message with
destination destName received by forwarder on its link inLink must be forwarded
by sending it on outLink. Clearly forwarder must be an endpoint of both inLink
and outLink, and destName must not be the name of member forwarder.

More generally, forwarding can be based on other fields in the message header
in addition to the destination, for example the name of the message source. A
forwarding protocol is a set of conventions about the formats of message headers,
about the representation of route information, and about how the members should
behave in sending, receiving, and forwarding messages. Usually the link protocol
of a network is not described separately, but is considered to be part of the
forwarding protocol.

2.3. Network state is dynamic

So far the state of a network (which is distributed over its members) consists
of its members, some representation of its links (including which members are



primary function state component maintenance algorithm

member algorithm
attachment algorithm
location algorithm

link algorithm
routing algorithm

members
attachments
locations
sessions
links
routes

session protocol

forwarding protocol

Figure 5. The components of a network. Solid arrows show which protocol or algorithm writes

a state component, while dashed arrows show which state component is read by a primary
function.

connected by each link), and its routes. Each of these state components must be
initialized (“configured” or “provisioned”) when the network starts up. The state
components of a network (some of which have not been introduced yet) are listed
in Figure 5.

Many networks are highly dynamic. This mean that all their components can
change as the network runs. Members and links can change as a result of failed
users and resources, or new or re-instated users and resources. Because routes are
dependent on members and links, they must change as members and links change.
Routes can also change as a result of changes in resource-allocation policies..

In general, there is a distributed algorithm to maintain each of these state
components over time. Note that the network’s information about a member can
include authentication credentials and other data as well as its name. In most
networks the routing algorithm is an important part of the network design, as it
consumes many resources and has a big influence on network performance.

2.4. The session protocol

A network’s forwarding protocol defines how members of the network can send
messages to one another, which is the network’s most basic function.

A forwarding protocol, however, has intrinsic limitations. It handles each
message independently. It is not completely reliable because members and links
can fail. Even if there is a healthy path between message source and destination,
the routes may be out-of-date and forward messages to failed regions, where they
will be lost.

To make up for these deficiencies, most networks have sessions. Like a link, a
session is a communication channel through which members can send messages to
each other. The difference is that a session is an instance of a service implemented
using the network’s links and forwarding protocol. The network’s session protocol
enables members to use this service. Session service in a network can include
many conveniences, such as:

• Reliable delivery of messages, by means of failure detection and retrans-
mission.

• FIFO and/or duplicate-free delivery of messages. Note that the session de-
limits the group of messages (those sent through the session in one direc-
tion) over which FIFO delivery is defined.



• Performance guarantees (“quality of service”).
• Security guarantees (authentication of endpoints, encryption).

The implementation of the session protocol must provide these services on top of
the forwarding protocol.

The identification of a session has four parts. For each endpoint there is the
name of the member, and for each endpoint there is a port that distinguishes the
session from all others of the same member. Ports are necessary because a pair of
members may have more than one session between them simultaneously.

Figure 5 would be more symmetric if there were a session maintenance algo-
rithm separate from the session protocol that uses sessions. In many networks,
however, the session state is by far the most rapidly changing of the six state
components. Thus it is conventional to speak of one protocol that sets up, tears
down, and uses sessions, while also maintaining whatever state is necessary to
implement the session services.

2.5. Joining networks

Now suppose that we have two networks A and B, and we wish to join them, i.e.,
to make it possible for any machine using A to communicate with any machine
using B.

Perhaps the simplest approach is to install some new links between ma-
chines/members of A and B. Unfortunately this will not work in general, because
A and B may have different session and forwarding protocols—so their members
do not “speak the same language.” Even if A and B use the same protocols, there
may be members of A with the same names as members of B, so that names in
a merged network would not be unique.

Another approach would be for A and B to have some shared or dual mem-
bers. This approach is very similar to the one above, and has the same deficien-
cies.

The only completely general solution to the problem is to create a new net-
work used by the machines now serviced by A and B. In the new network, all
members have unique names, and implement the same protocols. This is a sen-
sible solution if and only if we can implement this new network using A and B,
rather than discarding them and starting over.

The way to do this is shown in Figure 6. Each member of new network C must
communicate through the operating system of its machine with a member of A or
B, depending on which existing network the machine uses. In the state of network
C, the member of C is attached to the member of A or B. In the state of A or B, the
member is the location of the member of C. In the figure attachments/locations are
shown as vertical dotted lines, and are always within the same machine, although
the machine boundaries are not shown. Corresponding attachments and locations
have almost the same information, but each of the two networks involved needs
its own copy for its own purposes. Furthermore, each network will have its own
data representation, distribution, and maintenance algorithm for it.

To create a physical connection between A and B, at least one machine must
belong to both subnetworks. On this “gateway” machine there are members of



new link

new session

network
C

network
A

network
BA1

C1 C2 C3 C4 C5

A1 A2 A3 B3 B4 B5

Figure 6. A network C implemented using networks A and B.

all three networks; for example the member C3 of C is attached to members of

both A and B.

Functionally the relationship among these networks is quite simple. Each link

of C is implemented by a session of A or B, depending on which subnetwork its

endpoints are attached to. To see this in more detail, let us consider one way to

add a new link to C between C3 and C5. As both C3 and C5 have attachments

to network B, this link will be implemented by a new session between B3 and B5.

If C3 initiates formation of the new link, it might send to B3 (through the

operating system of its machine) a request to form a new link to C5. B3 looks up

C5 in the locations state component of its network, and finds that it is located

at B5 in network B. An exchange of messages between B3 and B5 sets up the

session. A message from C3 to C5 travels as follows:

1. C3 sends the message to B3 through the operating system of their machine.

2. B3 encapsulates the message from C3 to C5 by enclosing it in a message

with source B3 and destination B5. This message is sent through the new

session to B5.

3. At B5 the received message is decapsulated by stripping off the B-level

names, and delivered to C5 through the operating system of their machine.

A message from C5 to C3 travels the reverse path. Messages between C3 and C5

create the dynamic link and use it to transmit data for C in both directions.

These details illustrate that a link in a network can be virtual (as the links

in C are) as well as physical (as the links in A and B are).

The new session in B is not intended primarily to benefit the members of

B. Rather, its primary purpose is to implement a communication service that is

used by C. So one network can export and implement a communication service

that is used by other networks, provided that the communicating members of a

user network are attached to members of the implementing network. Apart from

the necessary programming interfaces for attachment and services, each network

is independent and adheres to all previous descriptions and constraints.



the
Internet *

Figure 7. The relationship among networks world-wide. A network with attachments in another

network uses that network directly.

2.6. The “uses” hierarchy

The Internet consists of a very large number of networks arranged in a “uses”
hierarchy. The exact nature of the “uses” relation is explained in Section 2.5 and
Figure 6.

Figure 7 is a large-scale, extremely simplified view of the shape of the world-
wide “uses” hierarchy. In interpreting this figure, it is important to realize that
each network spans some area—from house-sized to continent-sized—of the (ap-
proximately) two-dimensional surface of the earth. So the largely one-dimensional
picture of each network does not do justice to its span and ability to connect
machines.

In Figure 7, the largest network is the Internet. It has the capability to con-
nect any two machines in the world. The Internet Protocol (IP) is its forwarding
protocol, and TCP is its session protocol.

The Internet uses (from a top-down perspective) or connects (from a bottom-
up perspective) thousands of networks with fewer members and smaller physical



spans. Ownership and administrative authority are important attributes of each of
these lower-level networks. In larger autonomous domains, there can be multiple
levels of subnetworks, because each level implements (in its routing algorithm) a
different kind of resource management. A member at a higher level has one or
more attachments to lower-level networks, depending on whether or not it is a
gateway.

Although it is less well understood, there is also a hierarchy of virtual net-
works that use the Internet and are therefore above it in Figure 7. These networks
may have restricted membership for security, as VPNs do. They may implement
special-purpose communication services, as middleware does. Or they may con-
nect members that are programs (clients and servers) of a specific application,
communicating in application-specific ways.

Like the networks below the Internet, these networks above the Internet have
fewer members. They have fewer members because they are functionally special-
ized, however, rather than smaller in physical span.

Note in the figure that the attachment structure above the Internet is usually
the opposite of the attachment structure below it. Often members from multiple
networks are attached to the same lower-level member. This is because function-
ally specialized cliques are sharing the resources of general-purpose communica-
tion networks. Note especially the Internet member marked with an asterisk. On
its machine there are members of all four networks above, and all four of these
higher-level members get their network service from the marked Internet member.

In this context, it is worth mentioning the most widely used network above
the Internet, which is the World-Wide Web. Its members are Web clients and
servers. Its session protocol is HTTP. It has a dynamic link, implemented by IP,
for each session, and therefore has no routing or forwarding.

The name space of the Web network has two name types: IP addresses and
domain names. Clients are named with IP addresses, and servers have domain
names.

In a network, the attachments state indicates which members are attached
to which network below. There is no need for explicit attachments in the Web
network, because all members are assumed to be attached to the Internet network,
by which the Web’s links are implemented.

In a network, the locations state indicates which members of which higher-
level networks are located at (attached to) which members of the network. For
Internet locations of Web members, there are two cases. Web clients with IP
addresses in the Web network have the same name in the Internet, so there is no
need for explicit state. Web servers with domain names are located at IP addresses
in the Internet; the locations state for them is implemented by the Domain Name
System (DNS). DNS is a globally distributed directory in which any member of
the Internet can look up the Internet location of a domain name.

2.7. Network architecture

Although the modules in Figure 7 are called networks, they are also often referred
to as layers because the necessary software in each machine is organized as a
hierarchy of layers. (This hierarchy of layers within network software is also known
as a “protocol stack.”)



Adopting the terminology of layers, it may seem that there is nothing new
here—both the classic Internet architecture [3] and the OSI reference model [10]
also describe network architecture as a hierarchy of layers. In fact, our approach
is radically different from these earlier models.

In both the Internet and OSI architectures, there is a fixed number of layers.
Each layer has a specialized function that is indispensable and different from
the functions of the other layers. Referring to Figure 1, the link layer provides
communication links by means of “local” networks with varying physical spans.
The Internet network layer does routing and forwarding as defined by IP. The
Internet transport layer provides sessions as defined by TCP (and occasionally
other session protocols).

In our theory of networks, each network or layer is a microcosm of networking
containing all its basic functions and state components, as in Figure 5. Because
networks are self-similar, any number of them can be composed (as suggested by
Figure 7).

Networks instantiated at different levels, with different scopes (sets of po-
tential members) or with different physical spans, have different purposes. As a
consequence, their functions and state components take different forms. For one
example, we are most familiar with routing algorithms in the Internet core, where
their purpose is global reachability. A higher-level middleware layer might offer
security as part of its communication services. Implementing security might en-
tail routing all messages to a particular destination through a particular filter-
ing server, so that, in this layer, part of the purpose of routing is security. An
application layer might create a new link between two members whenever those
members need to communicate, implemented by communication services below.
In this layer the routing algorithm is vestigial, as no member ever forwards.

We now consider the real packet in Figure 2. How do these network architec-
tures describe it? It simply does not fit the classic Internet architecture, which
tells us that the headers should be, from bottom to top:

1. An Ethernet header, allowing a physical Ethernet to implement a link.
2. An IP header, for forwarding in the network layer.
3. A TCP header, creating a session in the transport layer.
4. A header for the application protocol.

In our theory of networks, this packet makes sense. From bottom to top:

1. There is an Ethernet providing the physical link on which this packet has
just traveled. Its software uses an Ethernet header.

2. Above the Ethernet, there are MPLS networks at two different levels.
MPLS networks create and use long-distance virtual links. Routing in these
networks manages high-volume, high-speed traffic. The presence of net-
works at two extra levels indicates the sophistication of resource manage-
ment needed to operate a large network.

3. The next three headers (IP/UDP/GTP) belong to the AT&T mobility or
cellular network. IP is used as the forwarding protocol, and UDP plus GTP
makes a session protocol that provides mobility and quality of service for
cellphone users.



4. We can see from these headers that the cellphone is being used for a data
service rather than voice. The next two headers belong to a network pro-
viding secure communication service. Its forwarding protocol is IP (again),
and its session protocol is IPsec.

5. The next two headers (IP again and TCP) belong to a network providing
forwarding and reliable FIFO communication service.

6. The HTTP header is the most mysterious: HTTP is usually thought of
as an application protocol, but it is not playing that role here. Because of
private networks and firewalls, it can be difficult to create a TCP session
between two machines, one on the public Internet and one connected to
the Internet through a private network. This header indicates the presence
of another network in which the links are implemented by TCP at a lower
level, and HTTP is a session protocol capable of forming a session that
spans a public/private boundary. HTTP has been comandeered for this
odd purpose for the simple reason that firewalls are more tolerant of HTTP
traffic than other kinds.

7. Finally there is a distributed application system whose members commu-
nicate for their application-oriented purposes. Its links are dynamic and
connect whichever application members need to communicate, being im-
plemented by the HTTP network. Viewing this distributed system as an
application-oriented network, there is no need for forwarding or a session
protocol, so most network components are vestigial.

This example shows how even Figure 7 is over-simplified in implying that there is
a single uniquely identifiable Internet layer. The broadest network through which
this packet travels might be 4 or 5, depending on design information we cannot
guess from the packet alone.

We have named this view of network architecture the geomorphic view of
networking, because its complex arrangements of layers resemble the complex ar-
rangements of layers in the earth’s crust. The name distinguishes it from network
architectures having a fixed number of layers.

3. A note on generality

Section 2 has presented an informal descriptive framework for networking. This
framework has been validated by applying it successfully, over five years, to a
large number of examples at all levels of networking.

Some aspects of the framework have been simplified just for presentation in
this paper. For example, it was stated that every member of a network has a
unique name. In actuality a member can have no name or many names. One name
can map to more than one member. These variations are all expressible in the
formalization of the theory (next section).

We have also discovered two additional features that will need to be added.
It must be possible to partition a network into domains, mirroring regions of
administrative authority and trust. A domain within a network will have names
and routes separable from those of other domains within the network. Also, it
must be possible to have compound sessions consisting of concatenations of simple



sessions, which are the same as sessions in Section 2. Compound sessions are
related to domains: if naming is different in different domains, a compound session
(which can have different source and destination names in each simple session)
may be needed to traverse domain boundaries.

Except for these relatively minor additions, the descriptive framework of Sec-
tion 2 appears to be completely general with respect to contemporary networking.

4. Formalization of the theory

To get the benefits of a real theory of networks, it is necessary to formalize the
descriptive framework. Our target must be a family of inter-related models, as
no single model could possibly be comprehensive and yet analyzable. Building
a family of increasingly detailed and useful formal models will be a long-term
project.

Most of the models so far are written in Alloy. Alloy and the Alloy Analyzer
are presented in Jackson’s book [11] and an on-line tutorial [1]. These models are
simplified in two enormous ways:

• They describe only static states or “snapshots.” There is no time and no
state change over time.

• They describe the state of each network as if it were centralized. There is
no formal representation of distribution or replication.

Although these simplications might seem to remove everything of interest, net-
working is such virgin territory for formal modeling that the models are very
revealing. Two of these models, one focusing on routing and one focusing on
sessions, can be found in the reference materials for the Marktoberdorf lectures
[17].

For one project an Alloy model was extended with time and with operations
that change the state. This model was used to prove a theorem about mobility,
which is a phenomenon in which multiple networks reconfigure themselves to
maintain connectivity to a moving device [21].

For some studies the temporal aspect of modeling is paramount. For this
research we use the model-checker Spin and its modeling language Promela [9]. For
example, some of our work is concerned with extending current session protocols
to perform new functions [22].

Both Alloy and Spin perform fully automated analysis of formal models (for a
detailed comparison of the two, see [18]). More specifically, they verify properties
within a bounded universe, by means of exhaustive exploration of the universe.
Fully automated analysis is absolutely necessary for development of a theory of
networks, because the modeling work is highly exploratory. There is a continual
interplay among formal description of network behavior, formal description of
network properties, and verification of properties. The best outcome balances all
three, rather than emphasizing one at the expense of the others. When the theory
is more settled and mature, it will make sense to create real proofs of important
theorems.

As stated above, a full and useful theory of networks is a long-term project.
It will require models with great expressiveness with respect to states, models



with great expressiveness with respect to temporal behavior, and some way to
build bridges between the two. It will require simulation, automated analysis,
and theorem proving. It will also require ways to modularize and organize a large
family of models, some of which present overlapping views, and some of which
are specializations or refinements of others. Modeling and verification tools are
improving rapidly, and it is to be hoped that their progress matches the growing
use of formal methods in networking.

5. Applications of the theory

This section is a brief summary of our ongoing research that uses, enhances, and
validates the theory of networks.

5.1. Mobility

Mobility is a communication service that preserves the communication channels
of a mobile device (machine) as it changes its attachments to various networks.
Mobility is enormously important today, but it was not important when the classic
Internet architecture was designed, and the classic Internet architecture makes
mobility difficult to achieve.

Although there are hundreds of protocols and proposals for implementing
mobility, we have discovered that there are exactly two patterns of which all
these proposals are instances. This was not known until the application of the
geomorphic view made it clear to us.

The patterns are explained in a chapter of a recently published SIGCOMM
electronic textbook [20]. The chapter also surveys all the major approaches to
mobility, and shows how each is an instance of one of the patterns. For example,
four proposals in the standardization process of the Internet Engineering Task
Force are similar implementations of the same pattern, and knowledge of the
pattern makes it possible to compare their subtle details.

These patterns expand into a large potential design space for mobility. As
either or both patterns can be implemented in any layer, it is important to show
that these implementations can compose with synergy and without interference.
A recent paper shows how a compositionality property can be formalized—which
is often the hardest part—and proved (for a small universe) with the help of Alloy
analysis [21].

5.2. Middleboxes

Middleboxes are members of a network placed on the communication path be-
tween two endpoints (also members). Middleboxes perform a wide variety of func-
tions, usually related to security or optimization of performance. Middleboxes are
not part of the classic Internet architecture, and they have been controversial ever
since the Internet became widely used.

Today the need for middleboxes is accepted, and the challenge is to introduce
them into communication paths in efficient and scalable ways. This is usually done
by means of routing, but we are investigating the possibility of using a session



protocol instead. In this work, the geomorphic view is a guide to how design new
mechanisms for generality and compositionality [22].

5.3. Network verification

Network verification is a new and rapidly growing area of research. Network ver-
ification is based on general models of routing that are state snapshots, just like
the nontemporal Alloy models in Section 4. These general models are instanti-
ated with data from real networks. Decision procedures then check for specific
instances of desirable general properties such as reachability, security blocking,
and routing through middleboxes [2,12,16].

Most work on network verification is like the classic Internet architecture in
the sense that it assumes a central IP layer in which all the action occurs. To
the extent that there are non-classic functions such as middlebox insertion, they
must be encoded or embedded in ordinary IP routing.

In formalizing the geomorphic view, we take a complementary approach to
network verification, in which the modularity of layering is paramount. This means
that routing in each layer can by analyzed separately, checking for the properties
required by the purposes of that layer. It also means that we can define and
analyze cross-layer properties. So far we have formalized cross-layer properties in
two general categories:

• A session or link is effective if messages can actually be transmitted through
it. For a higher-level link or session to be effective, it must be properly
implemented at lower levels by effective sessions and links. Failures and
mobility can compromise effectiveness, and it is important to know that
failure-recovery and mobility mechanisms work correctly to restore effec-
tiveness.

• One of the most important practical aspects of routing is load balancing,
which is a kind of resource allocation. However, it has been observed that
many different load-balancing algorithms operate in networks, at different
levels, and that they run without knowledge of each other [15]. In such
situations, algorithms at different levels can interfere with each other. Load
independence is a property saying that if two routes or implementations
appear to be independent in a layer (where the resource-allocation decisions
are being made), they are actually independent at lower layers (which is
the implicit assumption). Without load independence, loads that appear to
be balanced over alternate resources may actually be allocated to a single
bottleneck resource at a lower level.

Formalization of the model is different from current work on network verifica-
tion in another way as well. Rather than emphasizing decision procedures on spe-
cific data, we are currently emphasizing theorems that relate desirable properties
to each other and to optional properties of network architectures.

6. Conclusion

To an outsider, the field of networking presents an enormous barrier to entry. Net-
working appears to be all details and no principles [13], and the number of details



to master grows rapidly indeed. Even when mechanisms are well-documented,
their purposes are not.

From an outsider’s perspective, the benefit of the geomorphic view of net-
working is that it is a lens through which networking makes sense. By decompos-
ing complexity into networks or layers, and looking for the common components
and patterns within each layer, it becomes possible to understand the purposes
for structures, and to ask the right questions about them. This has been my ex-
perience in learning about networking, and I hope that others can enjoy the same
benefit.

Acknowledgments

Section 2 was conceived on a long walk around Marktoberdorf with Michael Jack-
son, who asked all the right questions. Alexander Pretschner encouraged me to
believe that this is a good way to teach networking.

References

[1] Tutorial for Alloy Analyzer 4.0. http://alloy.mit.edu/alloy/tutorials/online.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and

D. Walker. Netkat: Semantic foundations for networks. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, Jan-

uary 2014.

[3] D. D. Clark. The design philosophy of the DARPA Internet protocols. In Proceedings of
SIGCOMM. ACM, August 1988.

[4] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in cyberspace: Defining

tomorrow’s Internet. IEEE/ACM Transactions on Networking, 13(3):462–475, June 2005.
[5] J. Day. Patterns in Network Architecture: A Return to Fundamentals. Prentice Hall,

2008.

[6] A. Feldmann. Internet clean-slate design: What and why? ACM SIGCOMM Computer
Communication Review, 37(3):59–64, July 2007.

[7] T. G. Griffin and J. L. Sobrinho. Metarouting. In Proceedings of SIGCOMM. ACM,
August 2005.

[8] M. Handley. Why the Internet only just works. BT Technology Journal, 24(3):119–129,

July 2006.
[9] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley, 2004.

[10] ITU. Information Technology—Open Systems Interconnection—Basic Reference Model:
The basic model. ITU-T Recommendation X.200, 1994.

[11] D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006,

2012.
[12] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static checking for

networks. In Proceedings of the 9th USENIX Conference on Networked Systems Design

and Implementation, 2012.
[13] J. Rexford. The networking philosopher’s problem. Computer Communication Review,

41(3):5–10, July 2011.

[14] T. Roscoe. The end of Internet architecture. In Proceedings of the 5th Workshop on Hot
Topics in Networks, 2006.

[15] O. Spatscheck. Layers of success. IEEE Internet Computing, 17(1):3–6, 2013.
[16] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and J. Rexford.

On static reachability analysis of IP networks. In Proceedings of IEEE Infocom. IEEE,

March 2005.



[17] P. Zave. Lectures and models for Marktoberdorf. www2.research.att.com/~pamela/mark.

html.
[18] P. Zave. A practical comparison of Alloy and Spin. Formal Aspects of Computing,

2014. The final publication is available at Springer via http://dx.doi.org/10.1007/

s00165-014-0302-2.
[19] P. Zave and J. Rexford. The geomorphic view of networking: A network model and its uses.

In Proceedings of the 7th Middleware for Next Generation Internet Computing Workshop.

ACM Digital Library, 2012.
[20] P. Zave and J. Rexford. The design space of network mobility. In O. Bonaventure and

H. Haddadi, editors, Recent Advances in Networking. ACM SIGCOMM, 2013.
[21] P. Zave and J. Rexford. Compositional network mobility. In E. Cohen and A. Rybalchenko,

editors, Proceedings of the 5th Working Conference on Verified Software: Theories, Tools,

and Experiments, pages 68–87. Springer LNCS 8164, 2014.
[22] P. Zave and J. Rexford. Stuck in the middle for you: Middlebox-aware session protocols.

Technical report, AT&T Laboratories—Research, June 2014.


