Distributed Media Control for Multimedia Communications Services

Eric Cheung, Michael Jackson, and Pamela Zave

AT&T Labs - Research
180 Park Avenue
Florham Park, NJ 07932, U.S.A.

Abstract-Recent work in Distributed Feature Composition
architecture has shown that a modular, compositional
architecture of feature logic can lead to successful management
of feature interaction. It can also promote rapid deployment of
new services and third party innovation in a communication
network. ECLIPSE is an implementation of DFC that focuses
on Voice over IP (VoIP) and multimedia over IP. In ECLIPSE,
the signaling messages traverse units of feature logic (feature
boxes), but by necessity the media data have to take a separate
and more direct path. This paper describes a scheme in which
the feature boxes can cooperatively control the flow of media in
an optimal path, while still maintaining the benefits of the DFC
architecture. This scheme supports any desired media
connectivity, and is independent of VoIP protocols (e.g. SIP and
H.323), or the underlying media switch fabric implementation.
This result is also applicable to other component architecture
for communications. Comparison is made with other schemes
proposed in the literature.

L INTRODUCTION

Distributed Feature Composition (DFC) is a modular,
component-based architecture for communication services[1],
and ECLIPSE[2] is an implementation of DFC in an Internet
Protocol (IP) setting where signaling and multimedia travel in
an IP network. DFC/ECLIPSE helps expose and manage
feature interactions, contributing to coherent system behavior
and allowing fine-grained service customization and
innovation. It also emphasizes a clean separation of concerns
between signaling and media control.

This section gives a brief introduction of DFC. The need
for a separation of signaling and media in an IP environment
is then discussed. This in turn leads to the need for a scheme
for the distributed signaling entities to control the media,
which is the subject of this paper.

A. Distributed Feature Composition architecture

The aspects of DFC relevant to this work are presented
below. [1] and [2] give a more complete treatment.

1) At the edge of a DFC network, line and trunk
interface boxes connect to devices and other networks.
Resource interface boxes connect to media processing
resources, e.g. multimedia player, text-to-speech server,
speech recognizer and so on.

2) Units of feature logic are encapsulated in feature
boxes.

3) Interface and feature boxes have ports. Two ports in
2 different boxes can be connected by an internal call.

4) An arrangement of feature boxes connected by

internal calls forms a usage. The ordering of the feature
boxes is important, and is based on partial precedence
relationship. This helps manage feature interactions.

5) DFC defines a protocol and a minimalist set of
signaling messages that establish the signaling and media
channels. These signaling messages travel along the usage
and are processed by the feature boxes in order.

6) Logical media channels are also established along an
internal call.

7) Sources and sinks of media are either in interface
boxes, or in devices and resources connected to by interface
boxes.

Fig. 1 shows an example usage with 3 connected parties,
with call waiting and hold features involved.

B. Requirements for Distributed Media Control

In ECLIPSE, signaling messages and media both travel
over an IP network. However, they take very different paths.
Signaling messages must travel through feature boxes in a
usage, where these feature boxes may be distributed based on
signaling efficiency and ownership criteria. On the other
hand, the main criterion for media path is to minimize latency
and bandwidth utilization. The media cannot travel hop-by-
hop through the feature boxes. Instead the media must travel
in as direct a path as possible from endpoint to endpoint.

Therefore, the ECLIPSE architecture is divided into a
signaling layer consisting of feature boxes and interface
boxes (DFC-boxes or Dboxes), and a media transport layer.
The media transport layer performs the actual conveyance,
switching, and mixing of media, and can be made up of one
or more media switches. The Dboxes then have to be able to
control the media layer. The requirements for this control
mechanism are list below:

Compositionality: This is a key goal of DFC, i.e. new

Internal Call
Media Channel

—
HOLD .,_<>/ o
\ Feature Box
\ External Port
Interface Box / Internal Port

=

B

) CW

Fig. 1. Example of a DFC usage

features can be added without modifying any of the existing
features, and the new and existing features can work well
together to form a better service. This requires that feature
modules are autonomous and have no knowledge of other
features, and there is no need for a global entity that
understands the details of all the features and controls them.

Efficiency and performance: Some of the considerations
include bandwidth utilization overall or over specific network
segments, time taken to establish media connections, and
latency. Note that these can be conflicting requirements.

Independence from media implementation: The feature
programming in the Dboxes should be independent of the
implementation details of the media switches. This also
implies stability of the feature programming and changing the
media implementation should not necessitate any rewrite or
recompilation of the feature boxes.

Distributability: there should not be any restrictions on
how feature boxes and media switches can be distributed in
the network.

Protocol and device independence: The solution should
support a wide range of devices and networks using a mixture
of standard VolIP protocols, e.g. SIP[3] and H.323.

We will use two example deployments to illustrate some of
these requirements. The first example is an IP PBX for a
business hosted in the network by a service provider. The
PBX feature logic is located in the network, possibly in a
multi-tenanted arrangement. However, for communications
amongst workers, it is more efficient and desirable for media
switches to be on premise to avoid hair pinning of media to
the network. In effect the hosted IP PBX is distributed across
the network and the customer premise.

The second example is residential cable modems providing
telephony functionality. = Most broadband services offer
limited upstream bandwidth. For a N-way calling feature, it
is not desirable for a home device to send out multiple media
streams to all the participants. Instead, it is more desirable to
locate the mixing capability in the network.

Although in the two cases the distribution and the variety
of media switches may differs, the feature boxes should be
insulated from the differences and work in both deployments
without modifications.

IL. MEDIA LAYER
A. Model for Media Connectivity Abstraction

Based on the requirements above, we have designed an
abstraction of media connectivity for Dbox programming.
The abstract model is a representation of a usage, but it is
more concise and only represents the media connectivity of
the feature boxes that wish to control a particular medium.
Because the connectivity of each medium in a multimedia
communication can be different, a separate model is used for
each medium.

The abstract model is slave to the feature boxes. The
feature boxes control and modify the specific portion of the

model that belongs to them. The model centralizes the media
connectivity states distributed across the feature boxes, and
its output is the aggregate of the media states of all the feature
boxes.

The following are the abstract entities in the model:

Channels: As discussed in Section I-A, there can be
multiple media channels in each DFC internal call. Each
channel is characterized by the media type (voice, video, and
so on) and a channel identifier. Media travel in both
directions along a channel, i.e. channels are bi-directional in
media connectivity.

Channel terminations: For each channel, there are 2
channel terminations, one at each port of the internal call. A
channel termination is identified by a (port, channel-
identifier) pair.

External channels and external channel terminations: An
external channel is a media channel between an external port
on an interface box, and an external entity such as an
endpoint device or a media processing resource. An external

channel is only identified by one external channel
termination.
Links: A link connects a channel termination to another

channel termination in the same Dbox. Links are uni-
directional in media connectivity. A Dbox changes its media
connectivity state by controlling its links. If a channel
termination receives 2 or more links, then its output is the
sum of the two media streams and mixing is required.

It is important that links are uni-directional. This provides
flexible control of media connectivity. For example, in a
contact center environment, a supervisor may wish to
eavesdrop on a conversation between an agent and a
customer, and whisper instructions into the agent. A
‘monitor’ feature box will then have links as shown in Fig. 2.
The agent hears the caller and supervisor mixed together.

B. Architecture — decomposition into three layers

To maintain the model, an abstraction layer is added
between the signaling and media layer to, as shown in Fig. 3.

For each medium, one or more Mboxes in this layer are
responsible for receiving commands from the Dboxes and
maintaining a potion of the model. They in turn issue
implementation specific commands to the media layer.

It is important for distributability of feature logic that
multiple Mboxes are supported. However, for simplicity the
discussion here is limited to 1 Mbox. Having more than 1

/ Supervisor

/\ Link

Caller
i

Agent

—<— Channel

Fig. 2. Links in a call center Monitor feature box

—— —
oy
e G e T o———o %
"-_ . T . Signaﬂg:'ng Layer

[P NG g = =

H S y - “control 4 i
iy H
% control
t Mbox =TT Mbox H
\ H
",‘ Abstraction Layer
e - - - _ L e e D DD - - - Lo oo
- ! L S
ST, é media @«“‘ Media Layer
Media Switch

Fig. 3. Architecture with 3 Layers

Mbox requires additional communication between the
Mboxes that is media implementation specific, in a similar
manner as the external channel (see below).

C. Dbox — Mbox Commands

A Dboxes issues a sequence of commands to its assigned
Mbox to manipulate the model that the Mbox maintains.
Because it only has information of its own ports and

immediately neighboring ports, this scheme ensures that a
Dbox can only affect its own media connectivity.

The command set includes:
teo)

teo)

open2Links (t,, t»)

openLink (teron,

closeLink (teroms

close2Links (t,, ty)
openChan (t,, t,)
closeChan (t;, t,)

openExtChan (tey:, remote media info)

modifyExtChan (tey:, remote media info)

closeExtChan (texe)

The semantics of openLink, closeLink, openChan,
and self-explanatory.
Open2Links and close2Links commands are shortcuts for
the very common operations of opening and closing opposing
links between 2 channel terminations. For example,
openLink (t;, t,) and openLink (t;,t,) can be replaced
by open2Links (ty, t;).

closeChan closeExtChan 1S

OpenExtChan (t...) is used to open an external channel
defined by external channel termination t.,., and can only be
issued by an interface box. The interface box can also supply
the media information of the remote side (e.g. in the form of
Session Description Protocol or SDP descriptor [4]), or if it is
not known at the time, supply it later with the
modifyExtChan command. The Mbox replies with the
media information in its media implementation. This scheme
works well with protocols such as SIP as shown in Fig. 4.

When an Mbox receives a command from a Dbox, it
checks the validity of the command and then updates the
model. If necessary, it sends command(s) to the media
switch fabric. When this is completed, the Mbox sends a
reply to the Dbox to confirm success of the operation.

D. Model Reduction

The task of the reduction engine is to reduce the abstract
model of channels and links to a model consisting only of
external channel terminations and how they are connected.

One approach is to convert the domain specific channels-
links graph to a directed graph, and then standard graph
theory algorithms (e.g. [5]) can be employed to calculate how
the external channel terminations are connected. This can be
performed in the following steps:

1) Replace each channel termination ¢ with 2 vertices v;,
and v,,. (The in and out designation refers to the media
flowing into or out of a Dbox)

2) Replace each link from ¢; to #, by an edge <v; in, V2 0ur>.

3) Replace each channel between t; and ¢, by edges
<V1ounV2,in™> and <V o, Viin>.

For example, to find out to where media flowing into
external termination ¢; should be transmitted, one can find all
external terminations ¢ where there exists a path from v, ;, to
Vour 1 the directed graph.

E. Media Switch Fabric Control

Based on the connectivity of the external channel
terminations, the Mbox can issue the appropriate messages to
control the media implementation. In the current version of
ECLIPSE we have selected H.248/Megaco[6] Media
Gateway (MG) as the media switch implementation.
Therefore the Mbox acts as a Megaco Media Gateway
Controller (MGC), and issues Megaco commands to the MG.

Another candidate for media switch fabric is the potential
switching and mixing capability of SIP user agents (through
the re-INVITE mechanism) and H.323 terminals (by opening
and closing logical channels). However, there are some
disadvantages of relying on endpoint devices for media
control:

1) Commercial products have different capability. For
example, some devices may be able to handle mixing of
several incoming streams, or sending media to multiple
destinations, while some can only handle one stream.

2) Some considerations, such as legal wiretapping and
privacy, require that the source and destination of media
packets to be anonymous to the endpoint devices and users.

Megaco offers a general media switching and mixing
solution. The media connectivity is modeled by terminations

<> =
I openExtChan() ! :
Reply(SDP
| PYSDP) v \\viTE(sdp) :
I I I
! modifyExtChan(sdp) ! 200 OK(sd !
e

Fig. 4. External channel commands

and contexts. Terminations are media endpoints, and are put
into different contexts. By default, a termination in a context
receives media from all other terminations in the same
context. However, this can be modified by the mode of the
terminations, and the fopology of the context. Mode and
topology together allow any desired media connectivity
arrangement to be achieved.

The external terminations in the Mbox model are mapped
to terminations in the Megaco MG. To compute the context
to which each termination belongs, the directed graph can be
divided into its weakly-connected components. External
terminations that belong to the same component also belong
to the same context. Finally, the connectivity based on the
paths in the directed graph can be translated into mode and
topology.

III. EXAMPLE

An example with 3 users A, B and C is shown in Fig. 5. A
subscribes to calling waiting (CW) feature, and C subscribes
to a hold feature. At the beginning of the example, A is on 2
separate calls to B and C, and is using CW to put C on hold.
At the same time, C’s HOLD feature has not been activated.

Fig. 5(a) shows the abstract model and the output of the
reduction (lower left). A and B are connected, there the
terminations representing them are in one context. Cisin a
separate context. Note that B subscribes to call forwarding
(CF) feature, but as it does not take part in media control, it is
not assigned an Mbox and does not contribute to the model.

A then activates call waiting (e.g. with hook-flash). The
CW sends close2Links (a,b) and open2Links (a,c) to
the Mbox. From reduction of the model, the Mbox
determines that A and C are connected, and B is unconnected.
It then sends a Megaco move command to the Megaco MG to
move A to context 2.

Subsequently, C activates the hold feature. HOLD issues
close2Links (d,e) command to the Mbox, which re-
computes the model and determines that all 3 external
terminations are now unconnected. Therefore it sends a
move command to the MG to move C to a new context.

While this example only shows a single medium, multi-
media follows naturally with one model per media stream.

Iv. ANALYSIS AND RELATED WORKS

This scheme of distributed media control has been
implemented in the ECLIPSE project. On top of the Dbox-
Mbox command set, we have provided a media control API
for feature box programmers. We have also implemented the
Mbox and the graph, model reduction and Megaco command
algorithms, and a simple Megaco MG. A number of feature
boxes that manipulate media have been developed, for
example call waiting, call transfer and hold (mute). The use
of the media abstraction has been shown to greatly simplify
the feature logic of these features. How the requirements set
out in Section I-B are met is discussed below:

Pt %

b o—
./.\/
VRN a(:) c d. N T
— *——o *———o *——©O G—
\/ ~——
_______ e e e e e e — - -
|
oB 1 B
A / 1A
¢ LT c
context 1 context2 |~
oc !
reduced model
(a) Initial state: A and B talking.
b A
o—
./.V
VRN a./ N\ .c d."N.e T
—0 *——o ———o o ——o o—
N> N~
_______ e e e e e e e e e e -
|
oB B
A 1 A
o) | — c
\ context 1 context2 |~
og !
(b) CW box activated to switch to C
b T
o—
./.\/
a . N.c d e T
— *——o *o——o *———oO G—
~_—
_______ e e e e e -
|
oB ! B
A ! A
o 1 i
| context 1 context 2 context 2 707
oc

(c) C activates HOLD feature

Fig. 5. Example of media control by 2 feature

Compositionality: This is achieved as the Dboxes can
independently issue commands to the Mbox.

Distributability: The Mbox and MG are fully distributed in
the network. The only limitation is that at call setup, a newly
instantiated feature box is assigned an Mbox, and this
assignment lasts the lifetime of the feature box (usually the
duration of the call).

Independence from media implementation and stability:
The Mbox layer has undergone several changes while the
Dbox programming was able to remain unchanged. In the
event of changing the media implementation, only the Mbox
needs to be modified.

Efficiency and performance: It may seem that routing
media through the media gateway all the time is not as
efficient as direct endpoint-to-endpoint media path. In
implementation however, relaying via a media switch is
computationally inexpensive. In terms of latency, it adds
only a few milliseconds to the latency.

However, this is an area that warrants more investigation.
For example, when a party is put on hold, the media is still
transmitted to the media gateway. This is not an efficient use
of bandwidth. Another issue is that the Mbox is where the
parallel execution of the feature boxes converges, and it is
potentially a bottleneck.

While the media control scheme is described in the context
of DFC/ECLIPSE, it should be applicable to other distributed
component architecture as well. For example, SIP suggests
distribution of feature logic across endpoints (user agents or
UAs) and network-based servers (proxy servers and back-to-
back UAs). These entities can use the same technique to
control media connectivity as well.

A related work in the SIP community is described in [7]. In
this proposal, feature logic is contained in entities called
Application Servers (AS’s). Much of this work discusses
how a single feature in an AS issues SIP INVITE requests to
control media. Changes to media connectivity mid-call are
achieved by the AS sending re-INVITE requests, and the
endpoints interpreting them correctly. This work also
describes how multiple AS’s may be linked together in a
chain. In this case, the AS’s must relay the re-INVITE
requests correctly. For example, consider a scenario where
an AS has call waiting functionality, and another AS has hold
activated. When call waiting is triggered, the call waiting AS
will send re-INVITE requests to each of the 3 parties in the
call. The hold AS, when it receives this request, will have to
modify the request. Therefore, each AS has to be on constant
alert for new re-INVITE requests; and based on the content of
a request and the current state of the feature logic, the AS has
to modify or absorb the request. This approach is not
compositional, as it requires a unit of feature logic to be
aware of and rely on the behavior other units. In addition,
media control of each server is not encapsulated and hidden
from other servers. Furthermore, as discussed in II-E, there
are problems with relying on the endpoint devices to control
media. For example, not all commercial SIP devices support
re-INVITE requests.

A comparison can also be made with the Megaco
connection model of terminations and contexts. Megaco
terminations are real media endpoints that represent an RTP
endpoint, TDM endpoint and so on. However, in some way
our model of (internal) channels and links is analogous to
virtual terminations that join contexts, and topology within a
context. Therefore, if Megaco is extended to support such
virtual terminations, it can also be a suitable protocol for
distributed media control.

V. FUTURE WORKS

While multiple Mboxes in a usage is supported by this
scheme, there are several interesting issues that arise from it.
Firstly, what is the optimal assignment of Mboxes to the
Dboxes? The answer will depend on the exact nature of each
of the feature boxes in the usage, and this may also change in
the lifetime of a usage as feature boxes change state. Another
issue is that as the usage changes, media may pass through an
Mbox unnecessary. For example, user A establishes a 3-way

call with B and C, and the feature boxes that belong to each
user are assigned a different Mbox. Therefore, the 3-way
calling feature box is assigned A’s Mbox, and is performing
the mixing. If A drops out of the call and leave B and C in
conversation, then media will be hair pinning through A’s
Mbox. Therefore, a dynamic media optimization scheme is
required to change the media path, while causing as little
disruption to the ongoing communication as possible.

Another area of further work is performance analysis;
especially scalability with respect to number of feature boxes
per usage, and the number of usages. As these increase, the
complexity of the model increases. Further analysis is
required to determine whether the computational load of the
algorithms is linear or otherwise.

An interesting area is to test the scheme with a mixed
media switch implementation, for example with Megaco MG
and SIP re-INVITE mechanism. This has the advantage of
being able to exploit the switching and mixing capability of
SIP UAs if it is provided. These devices would use a SIP
Mbox. For devices that do not have this capability, they
would still use the Megaco Mbox. The feature boxes do not
have to be aware of this choice.

To conclude, we have described a scheme for distributed
and compositional media control. The abstraction of media
connectivity into the channel and link model isolates
signaling entities from the media implementation details. An
implementation using Megaco media gateway is completed.
Several future work areas have also been suggested.

ACKNOWLEDGMENT

We would like to thank our colleagues Greg Bond, Hal
Purdy, Chris Ramming and Xiaotao Wu for their helpful
comments and contribution to this work.

REFERENCES

[1] M. Jackson, P. Zave, Distributed feature composition: A
virtual architecture for telecommunication services,
IEEE Trans. on Software Engineering XXIV(10):831-
847, Oct 1998.

[2] G. Bond et al., DFC as the Basis for ECLIPSE, an IP
Communications Software Platform, Proceedings of IP
Telecom Services Workshop 2000.

[3] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg,
SIP: Session Initiation Protocol, IETF RFC2543, 1999.

[4] M. Handley, V. Jacobson, SDP: Session Description
Protocol, IETF RFC2327, 1998.

[5] N. Christofides, Graph Theory: An
Approach, Academic Press, London, 1975.

[6] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen,
J. Segers, Megaco Protocol Version 1.0, IETF RFC3015,
2000.

[7] J. Rosenberg, P. Mataga, H. Schulzrinne, Application
Server Component Architecture for SIP, IETF Internet
Draft (Work in Progress), 2001.

Algorithmic

