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Abstract

Distributed Feature Composition (DFC) is a modular ar-
chitecture for building telecommunication services. It has
been implemented and used to build two industrial-scale
Voice-over-IP services, as well as many smaller prototype
and demonstration services. With all this experience it
is possible to assess how and how well DFC modularity
works.

1 Introduction

Distributed Feature Composition (DFC) is a modu-
lar architecture for building telecommunication services.
Michael Jackson and I got the idea for DFC in an “aha!”
moment in December 1996. We spent 1997 and 1998
working out the details, and published the first paper on
DFC in 1998 [8]. In 1999 a team1 began working with
us to implement DFC. Since then this team, with new
additions2 and occasionally other AT&T colleagues, has
worked continuously on DFC-based technology and ap-
plications.

Historically, DFC bridges the Public Switched Tele-
phone Network (PSTN) and the Internet. When we in-
vented DFC, Michael and I had been studying the soft-
ware problems of the PSTN for some time, and we had no
other context in mind. Nevertheless, by the time DFC was
ready to implement, Voice-over-Internet-Protocol (VoIP)
was the new technology that researchers wanted to work
with. DFC proved to be equally applicable to VoIP, and all
of the implementations of DFC have been Internet-based.

The focus of this paper is modularity in DFC, which
is an adaptation of the pipes-and-filters architectural style
to telecommunication applications. This kind of modular-
ity is much less familiar than other kinds of modularity
such as object-oriented programming, so the primary pur-
pose of this paper is to explain where, why, and how it

1Gregory W. Bond, Eric Cheung, K. Hal Purdy, and J. Christopher
Ramming.

2Thomas M. Smith and Venkita Subramonian.

works. After 12 years, there is an abundance of experi-
ence to draw upon.

DFC was designed to support modular development of
features; Section 2 explains the significance of this moti-
vation and its history in telecommunications. Section 3 is
an overview of pipes-and-filters modularity as realized in
DFC.

The benefit of feature modularity comes with the bur-
den of managing interactions among features. This bur-
den is also an opportunity, because each principle for
identifying or managing interactions captures important
domain knowledge about the organization of features.
Section 4 introduces the major categories of feature in-
teraction and how they are managed.

Subsequent sections are based on our experience with
implementation of DFC and deployment of services built
on our platforms. They evaluate its form of modularity
and speculate on its future.

Most of the service examples in this paper come from
old-fashioned telephony, because these are simple and
easy to discuss. DFC is equally useful, however, for the
richer services being built or envisioned today. Contem-
porary telecommunication services differ from telephony
(including mobile telephony) in three ways:

† Rather than being limited to voice (low-fidelity audio),
they also support media such as music (high-fidelity au-
dio) and video. Text, images, and other data can also be
treated as media. For example, email fits easily into the
DFC architecture, as do home networks.

† Telecommunication services used to be limited to and
by “black” phones, with their very restricted user inter-
face. Now personal computers with Web browsers are
common, as are handheld devices with touch-sensitive
screens. These devices make it possible for users to in-
teract conveniently with much more elaborate and data-
oriented services.

† Not all telecommunications systems are stand-alone ap-
plications. They can also be embedded in applica-
tions for multiplayer games, distance learning, collab-
orative television, networked music performance, and
other forms of computer-supported cooperative work
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and play.

2 Feature-oriented description

DFC was designed to provide feature modularity and to
manage the feature-interaction problem, so an explanation
of DFC must begin with features.

The behavior of telecommunication software is almost
always described in terms offeatures. A feature is an
optional or incremental unit of functionality. Afeature-
oriented descriptionconsists of a base description with
additional, optional feature modules.

For example, a traditional informal explanation of tele-
phone service begins with Plain Old Telephone Service
(POTS), which has as its primary states idle, dialing, busy,
ringing, and talking. This is a base description. The expla-
nation then covers a set of separate features such as Speed
Dialing, Call Waiting, and Call Forwarding. Each feature
is presented as an addition or exception to POTS, without
mentioning or relying on other features.

The modification of POTS by features began in
the 1960s, when telephone switches became software-
controlled. By the mid-1980s large telephone switches
had thousands of features, each described in an informal
requirements document. Because there was no feature-
oriented programming technique, all of the features had to
be implemented in the same piece of software. The size
and complexity of this software was making it extremely
difficult to add new features and to maintain software re-
liability.

A feature interactionis some way in which a feature or
features modify or influence another feature in describing
or generating the system’s overall behavior. Feature in-
teractions are inevitable in any nontrivial feature-oriented
description. The modular nature of the description tends
to make interactions (at best) implicit or (at worst) ob-
scure.

For the large telephone switches of the 1980s and
later, feature interactions were perceived as a huge prob-
lem. It took tremendous skill to predict the interactions
implied by multitudes of informal feature descriptions,
and arduous labor to specify the desired behavior in all
cases. In the implementation, which was not decompos-
able along feature boundaries, feature interactions were a
major source of complexity and software defects.

The primary goal for the design of DFC was to find a
feature-oriented way to program telecommunication sys-
tems, so that features could be implemented indepen-
dently and yet composed to produce overall system be-
havior. We also needed a way to predict potential feature
interactions, enable the desired ones, and prevent the un-
desired ones.

3 Pipes-and-filters modularity

3.1 The signaling protocol

Basic telecommunication service is built into the DFC ar-
chitecture. Each user device is represented by a persistent
software module called aninterface box, which has a net-
work address and the ability to translate signals between
the DFC protocol and the native protocol of the device.

When one interface box calls another, the DFC protocol
forms a connection between them. This connection sup-
ports a single two-way, FIFO signaling channel and any
number of media channels.

When there are applicable features, telecommunication
service is provided by a graph called ausage, as shown in
Figure 1. The nodes of a usage includefeature boxesas
well as interface boxes. Each feature box is a concurrent
software process that implements a separate feature.

The edges of a usage areinternal calls, each of which
is a connection made with the DFC protocol. This means
that each feature box is a signaling and media endpoint for
the internal calls that it participates in. The terminternal
call is used to distinguish an edge in the graph from the
informal, end-to-end meaning of “call” in telecommuni-
cations.

In the DFC protocol, an internal call begins when one
box sends asetupsignal to another box. The box acknowl-
edges it by sending anupacksignal back, thus establishing
the connection and its signaling channel. Subsequently
the signaling channel can be used to open and close me-
dia channels. It can also be used for commands and status
signals involved in feature control.

Each setup signal carries a source address and a target
address. In simple cases these are the addresses of the
interface boxes on the two ends of the usage. However, as
we shall see, many features manipulate these addresses.

The two most important status signals areavail andun-
avail. Theavail signal travels from the callee or receiving
end of the call to the caller or placing end. It indicates
that the entity identified by the target address is available
for communication. Its dual isunavail, which indicates
that the targeted entity is not available. Either box partic-
ipating in a call can tear it down at any time by sending a
teardownsignal, acknowledged by adownack.

A well-designed DFC feature box has the properties
of transparency, autonomy,and context-independence.
Transparencymeans that when its feature is not active,
it is unobservable by other boxes in the graph. It is acting
as an identity element, merely relaying signals from one
port to another.Autonomymeans that when it needs to
perform some function, it does so without help from other
boxes. A DFC feature box can act autonomously because
it sits in a signaling path between user devices, where it
can observe all the signals that travel between them. Be-
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Figure 1: Example of a usage, with interface boxes (IB) and feature boxes (FB). Internal calls are represented by
arrows to show the direction in which they are set up.

cause it is a protocol endpoint, it can absorb or generate
any signals that it needs to.Context-independencemeans
that it does not rely on the presence of other features, or
contain any knowledge of them. A DFC feature box does
not know what is at the other end of the internal calls it is
participating in.

These properties are illustrated in a simple way by Call
Forwarding on Busy (CFB), which is the type of one of
the feature boxes shown in Figure 1. Initially the box be-
haves transparently, receiving an incoming internal call,
and continuing the chain by placing an outgoing inter-
nal call with the same setup information. If it receives
avail from downstream (its outgoing call), then its func-
tion is not necessary, and it stays transparent during its
entire lifetime. The usage containing this box (the graph
connected by solid arrows in Figure 1) persists while the
parties are communicating. When they are no longer com-
municating and the usage is no longer needed, ateardown
from either end propagates through the usage, destroying
internal calls and terminating box programs as it travels.

If the device interface box with addressb receives a
setup signal when the device is already busy, it will gen-
erate the status signalunavail. If a CFB box receives
unavail instead ofavail from downstream, it takes au-
tonomous action. It tears down its old outgoing call, so
that the subgraph between CFB and IB(b) disappears. It
places a new outgoing call with a setup signal contain-
ing the forwarding addressf as its target. This creates the
dashed subgraph extending to IB(f).

The CFB box is context-independent because the un-
avail signal that triggers it might have been generated by
the user device, or by any feature box between CFB and
the device. This point will be illustrated further in Sec-
tion 4.1.

3.2 The routing algorithm

In Shaw and Garlan’s characterization of a pipes-and-
filters architecture [11], the graph of pipes (internal calls)
and filters (boxes) is pre-configured and static. DFC is
more complex because each usage is assembled dynami-
cally and evolves over time.

The mechanism for assembling usages is theDFC rout-
ing algorithm, executed by aDFC router. A DFC router
has a different purpose from IP routers. The purpose of an
IP router is to find the destination of a message, while the
purpose of a DFC router is to insert feature boxes in the
path of a setup signal (message).

Each time a box sends a setup signal, that signal goes to
a DFC router that chooses a box to receive it, and forwards
the setupto the receiving box. Then the receiving box
sends an upack signal directly to the sending box, and a
direct connection is formed between them.

Every continuous routing chain from one interface box
to another contains asource regionand atarget region.
The source region comes first; it contains feature boxes
working on behalf of the source address in its role as
caller. The target region contains feature boxes working
on behalf of the target address in its role as callee. Each
addresssubscribesto some (possibly empty) set of feature
box types in each region. In the “solid line” subgraph of
Figure 1, there are two feature boxes in the source region
subscribed to by addressa, and two feature boxes in the
target region (including CFB) subscribed to by addressb.

If the CFB box is triggered to take action, its second
outgoing call is routed to a box on behalf of theforward-
ing address f, which is the target address in the new setup
signal. No additional boxes are routed to on behalf of
the original target addressb. The same thing can happen
in the source region, if a box changes the source address
when placing a call that continues the chain. Because of
this mechanism ofaddress translation, a routing chain can
have multiplesource zonesin its source region, and mul-
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tiple target zonesin its target region. Each zone contains
the feature boxes added to the chain on behalf of a partic-
ular address.

Within a zone, the routing algorithm orders the feature
boxes byprecedence. The source and targetprecedence
relationsare partial orders on feature box types.

Feature box types fall into two categories:free and
bound. When a DFC router is working on a setup signal
and selects a free box type as its destination, the router
creates a new feature box (program object) as an instance
of its type. Thus each free feature box is a transient,
anonymous instantiation of its type.

Bound feature boxes are completely different. For each
address subscribing to a bound feature box type (in either
region), there is a single, persistent instance of that box
type. When a router is working on a setup signal and se-
lects a bound box type as its destination, thesetupgoes to
the bound box identified with the address on whose behalf
it is required. The use and significance of bound boxes are
illustrated in Section 4.2.

A simple routing chain from interface box to interface
box begins when the calling interface box creates a setup
signal with thenewmethod and sends it to a DFC router.
To continue the chain, a feature box takes a setup signal
it has received and applies thecontinuemethod to it. The
continuemethod returns a suitable setup signal, which the
box then sends to a DFC router. Thecontinuemethod
gives the box the option to change (translate) the source or
target address of thesetup. For example, a CFB box may
invokecontinuetwice. The first time there is no address
translation, so both addresses of its first outgoing call are
the same as the addresses of its incoming call. The second
time it exercises its option to change the target address to
f.

Like signaling in DFC, routing in DFC supports trans-
parency, autonomy, and context-independence. By using
the continue method and no address translation, a feature
box can continue a routing chain transparently. A feature
box has some autonomy because it can affect routing by
address translation or its choice of routing method. (Fur-
ther uses of thenewmethod are discussed in Section 4.4,
and there is a third methodreversenot covered here.)
A feature box has context-independence because it never
uses or sees the names of other feature box types.

Usage-dependent routing history is carried in setup
signals and manipulated by routing methods and DFC
routers only. It can be encrypted to enforce the context-
independence of feature boxes. DFC routers need sub-
scription and precedence data, but are stateless with re-
spect to individual usages.

3.3 Other

Media and media control are discussed briefly in Sec-
tion 4.4. The only other aspect of the DFC architecture
is operational data, which is persistent data used by fea-
tures. For example, the CFB box gets its forwarding ad-
dress by retrieving it from operational data. Boxes can
write operational data as well as read it. Operational data
is usually partitioned by address and feature, so that a box
can only access data belonging to its subscriber and fea-
ture.

As a result of transparency, autonomy, and context-
independence, DFC features can be programmed indepen-
dently. A particular feature can be present or absent in a
usage without requiring changes in other features. Simi-
larly, features can be added to or removed from the system
without changing other features. These characteristics are
the essence of modularity in DFC.

4 Management of feature interac-
tions

DFC features are supposed to interact through the speci-
fied mechanisms of the architecture, and in no other way.
By constraining how features can interact, the architecture
makes it possible to identify and manage feature interac-
tions in an organized fashion.

Once a class of feature interaction is identified, it is nec-
essary to decide which members of the class are desirable
or undesirable. Domain knowledge and experience are the
best guides during this task.

Once the potential interactions in a feature set are pre-
dicted and evaluated, it is necessary to make adjustments
to enable the good ones and prevent the bad ones. The
preferred mechanism for managing feature interactions is
to make adjustments in the precedence relations.

To illustrate this process, the following subsections in-
troduce the five major classes of feature interaction in
DFC. Each subsection attempts to provide a little insight
into the nature of the interactions. The subsections also
provide some additional explanation of DFC.

4.1 Activation interactions

It is possible for one feature to activate a function of an-
other feature, or to ensure that it will not be activated.
Four features illustrate some of that ways that this can
happen: Call Blocking, Record Voice Mail, Quiet Time,
and Parallel Ringing. All of these features are subscribed
to in the target region.

First, I will describe briefly what these features do
and how they interact, assuming that they are ordered by
precedence as listed above and shown in Figure 2. Then
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Figure 2: Four features in the target zone of a subscriber.

I will show how this precedence relation could be derived
from the features themselves.

An instance of Call Blocking (CB) receives a setup
signal targeted to its subscriber, and checks whether the
source address is on the subscriber’s blocking list. If so,
it sendsunavail upstream, because this subscriber is not
available to this caller. CB does not continue the routing
chain, but rather tears down its incoming call and termi-
nates.3

If CB does not block its incoming call, then it contin-
ues the routing chain transparently by placing an outgoing
call. Its behavior is transparent from that point on.

Next in the chain is Record Voice Mail (RVM). RVM
is initially transparent, merely placing an outgoing call.

Next in the chain is Quiet Time (QT). If QT is currently
disabled by the subscriber, it is permanently transparent
and merely places an outgoing call to continue the chain.
If it is currently enabled, on receiving a setup signal, it
employs a media resource (see Section 4.4) to initiate an
interactive voice-response (IVR) dialog with the caller.
The media resource (IVR server) announces that the sub-
scriber wishes to be undisturbed, and prompts to ask the
caller if the call is urgent. If the call is not urgent, then
QT sendsunavail upstream and terminates, because the
subscriber is not available for casual calls. If the call is
urgent, then QT places an outgoing call and is transparent
from that point on.

If QT sendsunavailupstream, this signal reaches RVM
and triggers it. RVM employs an IVR server to prompt
for and record a voice message from the caller to the sub-
scriber. Before doing this, RVM sends an avail signal up-
stream. Thus RVM has the effect of turning failure (un-
avail) to success (avail). From a philosophical viewpoint,
this means that recording voice mail is considered to be
(almost) as good as talking to a person. From a practical
viewpoint, sendingavail prevents features upstream from

3Because the signaling channel is FIFO,unavail will arrive before
teardown, so that boxes upstream will know why the call is being torn
down. Most unavail signals are followed immediately byteardown.

behaving as if the call is still ringing and unanswered.
Whether QT is disabled or the user’s need is urgent, if

QT places an outgoing call, that call is routed to Parallel
Ringing (PR). PR places concurrent outgoing calls to a list
of addresses supplied by the subscriber, for example the
addresses of the subscriber’s mobile phone, home phone,
and work phone. This is the last box in the target zone of
the subscriber, because each outgoing call has a different
target address.

Note that an interface box to a phone or similar user
device will send an avail signal upstream when the user
answers the phone. If PR receives an avail signal from
one of its downstream branches, it tears down the other
branches and forwards the avail signal upstream. If it
receivesunavail from all branches or times out, it tears
down all the branches, sendsunavailupstream, and termi-
nates. The unavail signal will pass transparently through
QT and will trigger RVM to record a message, just as if
the usage reached a phone and the phone was busy.

This completes the brief description of the four fea-
tures. Note that each feature is described strictly in terms
of its own concerns. Its function and observable effects
make perfect sense if it is the only feature that the target
address subscribes to.

The “activation” class of interaction among these fea-
tures is based on the following feature properties, which
are easy to extract from feature programs in the form of
finite-state machines [12]:
† If a feature receives an incoming call and does not place

an outgoing call, itcancelsall features with later prece-
dence, because they will not even appear in the usage
for this subscriber.

† Some functions of some featuresare triggeredby re-
ceiving avail or unavail from downstream. For exam-
ple, avail triggers PR to tear down other branches, and
unavailtriggers RVM to record.

† Some of these featuresgenerateunavail signals up-
stream (CB, QT, PR) and onegeneratesan avail signal
upstream after receiving an unavail signal from down-
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stream (RVM).
By evaluating the potential interactions caused by cancel-
ing, triggering, and generating, we come to the following
conclusions:
† CB should be first. If it blocks, it cancels all subsequent

features, which is desirable. If it blocks it generatesun-
avail; it would be undesirable for that signal to trigger
RVM, which would happen if RVM preceded CB.

† RVM should precede both Both QT and PR. Both of
the latter generateunavail and it is desirable for these
signals to trigger RVM, which can only happen if RVM
is upstream of them.

† QT should precede PR. If QT is enabled and the call is
not urgent, no phones should ring. So it is desirable for
QT to cancel PR in this case.

This reasoning provides a total precedence order on the
four features that enables all desirable activation interac-
tions and prevents all undesirable ones. The same kind of
analysis can be applied to other shared signals.

It is important to note that this is one of many possi-
ble examples of target-zone feature sets. The functions
of these features could be bundled into features differ-
ently. Changes in feature purpose and bundling of func-
tions could result in different decisions about how the fea-
tures should interact. With very little extra programming,
it is possible to generate a wide range of possible and de-
sirable behaviors.

4.2 Multi-party interactions

A free feature box has exactly one incoming call; it cannot
have more than one because each incoming call is routed
to a fresh instance of the box type. In contrast, if an ad-
dress subscribes to a bound feature box type, thenall calls
routed to that feature for that address go to the same box.
Thus bound boxes make it possible for two separate us-
ages to join into one usage graph.

Bound boxes usually implement multi-party features,
such as Call Waiting (CW). A subscriber usually sub-
scribes to CW in both source and target regions, because
its function is desired whether the subscriber’s phone is
busy in a caller role or busy in a callee role.

CW is initially transparent. Its function is triggered
when it receives an incoming call for the subscriber when
CW is already supporting (transparently) a connection be-
tween the subscriber and some far party. At this time
it sends analerting signal to the new call as if the sub-
scriber’s phone were ringing, and sends a signal to the
subscriber that a call is waiting. On the subscriber’s com-
mand, it will switch the subscriber back and forth between
talking to the old party and talking to the new party. If
CW receives another incoming call while it already has
one call waiting, it will refuse it by generatingunavail
and thenteardown.

Another multi-party feature much appreciated by our
users is Mid-Call Move (MCM). MCM allows a sub-
scriber to move from one device to another during a con-
versation. For example, a subscriber can be talking on
a home phone, realize that it is time to leave the house,
and move the call to a mobile phone without interrupting
the conversation. On receiving a command from the user,
MCM places an outgoing internal call to the new device.
When the new device rings, the subscriber answers it and
hangs up the other phone. Like CW, a subscriber usually
subscribes to MCM in both regions, so that he can use the
feature regardless of who initiated the conversation.

A typical multi-party interaction is illustrated by Fig-
ure 3. The device with addressa subscribes to both CW
and MCM in both regions. In the left usage, MCM pre-
cedes CW in the source region and succeeds it in the target
region, so MCM is always closer to the device than CW.
If the subscriber triggers MCM when CW has a call wait-
ing, both calls to far parties are carried along to the new
connection with the phone having addressb.

In the right usage of Figure 3, the precedence order-
ings of CW and MCM have been reversed in both regions.
Note that MCM is implemented by free boxes, because
the function of MCM does not require joins. This is why
we see two instances of MCM, both on behalf ofa.

The right usage is troublesome when both features are
active. The typical default behavior of a feature is to for-
ward unrecognized signals transparently, so that it does
not interfere unnecessarily with the functions of other fea-
tures or user devices. If CW forwards unrecognized sig-
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nals from the subscriber to the far party currently selected,
as shown by the dashed line in CW, then a move com-
mand goes only to the lower instance of MCM. After the
subscriber hangs up phonea and the lower MCM tears
down its call toa, the waiting call will be lost. If CW for-
wards unrecognized signals from the subscriber to both
far parties, then a move command goes to both instances
of MCM. The resulting behavior (as both MCM boxes try
to connect tob) will be time-dependent and probably un-
desirable.

DFC modularity is especially valuable when it comes
to multi-party features. In Figure 3, each of the CW and
MCM boxes controls at most three internal calls, which
is not difficult to program. If we added Three-Way Call-
ing (TWC) to the feature set, CW and MCM boxes would
remain the same, and each TWC box would also control
three internal calls.

If these features were programmed monolithically,
however, the implementation of CW and MCM would
have to control four internal calls simultaneously, and
with TWC active there could be six. The complexity of
a monolithic program rises very rapidly with the number
of simultaneous calls to be controlled. This programming
problem is particularly acute when multi-party features
are added incrementally.

Multi-party features introduce other issues as well.
Here are three in addition to the previously mentioned
question of replicating or selectively forwarding signals
to multiple far parties:

† An internal call linking a feature box to its subscriber
may have to multiplex signals from multiple far parties.

† Signaling paths between devices may contain irregular
patterns. For example, on the left side of Figure 3, the
path between deviceb and the lower far party has two
outgoing internal calls joined at MCM, and two incom-
ing internal calls joined at CW.

† Different devices may have different user interfaces. A
feature box may interact with multiple or changing de-
vices, and therefore have multiple or changing user in-
terfaces.

Modularity in DFC draws attention to these issues, and
they can be handled in DFC with relative ease [16]. With-

out the kind of help DFC offers, such issues are often
overlooked or mishandled.

4.3 Interactions caused by address transla-
tion

When a feature box in the target region of an addresst1
uses the option in thecontinuerouting method to change
the target address tot2, it has an important effect on as-
sembly of the usage. There will be no subsequent boxes
on behalf oft1, even if some oft1’s features have not been
included yet. Instead, there will be boxes on behalf oft2.
The same thing happens when a box in the source region
translates the source address.

Address translation is a powerful mechanism. It per-
forms many functions and solves many problems. It can
also cause problems, in the form of interactions between
features of different zones in the same region. Precedence
does not help to manage these interactions, because the
relative order of zones in a region is determined strictly
by address translation. Precedence can only affect the or-
der of features within a zone.

A feature interaction in this category occurs when a
user with addressp has Parallel Ringing (PR) as described
in Section 4.1, configured to ring several devices includ-
ing his mobile phone at addressd. At the same time, the
user’s mobile phone has Unconditional Call Forwarding
(UCF), which he sets to forward all calls to the addressp
that subscribes to PR. Since UCF and PR are both imple-
mented by free feature boxes, the initialsetupfor a call
to one of these two addresses (d or p) will create a us-
age in which a new instance of PR(p) translates the tar-
get address tod, creating a new instance of UCF(d) that
translates the target address top, creating a new instance
of PR(p) that translates the target address tod, and so on
until the system runs out of resources. However strange it
might seem, many users will do this if given the chance.

The best general approach to managing address transla-
tion begins with a recognition of what each address repre-
sents [13]. In the example above,p represents aperson
and d represents one of the telecommunicationdevices
that the person uses. Other common kinds of address rep-
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resentgroupsof people,roles that a person plays, oror-
ganizations.

This recognition is useful all by itself because it empha-
sizes that an address should subscribe to the features that
work on behalf of the entity that the address represents.
For example, an address representing a person might sub-
scribe in the source region to a feature that allows the per-
son to translate the source address to an address represent-
ing his role as an employee. If the employee exercises this
option, his outgoing call would be routed through a source
feature that charges the call to his employer.

After categorizing addresses, it is next necessary to im-
pose a partial order on the categories. This order is based
on “abstractness” vs. “concreteness” of the thing repre-
sentedas a network endpoint. For example, a device is
very concrete, being literally a network endpoint. From
this perspective a person is more abstract, being reachable
from many network endpoints, and a group of people is
more abstract still.

There are three principles, all based on the abstraction
hierarchy of addresses, for organizing address translation
[13]. The first principle is that source-region features
should only translate source addresses to addresses more
abstract than their own, and target-region features should
only translate target addresses to addresses more concrete
than their own. This principle creates the pattern illus-
trated by Figure 4. It prevents the bad feature interaction
above (between UCF and PR) because UCF cannot trans-
lated to p.

The second principle is symmetry between the source
and target regions, which is often required for cor-
rect behavior. For example, one of the bad email
feature interactions identified by Hall [7] occurs when
user2@host2is maintaining anonymity in an email con-
versation withuser1@host1. User2is known touser1as
anon2@remailer; email to this address goes through an
anonymous remailer, which forwards it touser2@host2

while retaining the original source address.
The trouble arises whenuser2goes on vacation. On re-

ceiving email, his vacation program automatically replies
with “vacation” email, reversing the source and target ad-
dresses. Thususer1@host1receives email directly from
user2@host2, whose identity is now revealed.

This problem is due to the lack of a source-region fea-
ture box to balance the remailer, which is a target-region
feature box. A solution is shown in Figure 5. In this fig-
ure the mail hosts are interface boxes, and the vacation
program is part of the mail host foruser2@host2. This ad-
dress subscribes to Anonymize Source (AS) in the source
region. AS has in its operational data the correspondents
to whom user2wishes to be anonymous. When it re-
ceives email for one of these correspondents, it translates
the source address toanon2@remailer.

With this symmetric solution, all the user has to do to
create an anonymous conversation is to put the correspon-
dent address in AS data before sending the first email. The
rest is automatic.

For simplicity, Figure 5 is somewhat different from the
way that real email works. [13] describes several realistic
schemes based on the same underlying principle.

The third principle is that internal addresses can be pro-
duced and consumed by feature boxes for their own coor-
dination purposes, provided that an abstraction hierarchy
is preserved. This principle can be illustrated by the An-
swer Confirm (AC) feature.

Parallel Ringing (PR), as seen in Section 4.1 and Fig-
ure 2, has a serious vulnerability: if it tries to ring a device
configured for immediate voice mail (for example, a mo-
bile phone that is turned off), then voice mail will answer
immediately, aborting PR’s attempts to reach other phones
that might have been answered by people. AC removes
this vulnerability by reacting toavail from downstream.
It connects the answered phone to an IVR server, plays an
announcement “This is a call for . . . ,” and prompts for
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Figure 6: How Quiet Time uses a media resource.

a touch-tone acknowledgment. If the answering entity is
voice mail it will fail this test, and AC will sendunavail
upstream instead ofavail.

AC is a device feature, in the sense that some devices
should have it, and all other devices should be unencum-
bered by it. We cannot expect device addresses to sub-
scribe to it, however, because it acts on behalf of the per-
sonal address subscribing to PR. For a personal address
p subscribing to PR and a device addressd needing AC
when called by PR(p), the best solution is to introduce a
new addressp2d that PR calls instead ofd. The address
p2d subscribes to AC. When AC receives an incoming
call, it places an outgoing call tod. The addressp2dcan
be described as “internal” because it appears in the usage
only between PR and AC, and in the abstraction hierarchy
only betweenp andd.

4.4 Media-related interactions

In Section 4.1, both Record Voice Mail and Quiet Time
(QT) used media resources to implement IVR dialogs
with callers. To do this, a feature box places an internal
call to a suitable media resource (IVR server), which has a
DFC interface box just like any other device. The feature
box uses thenewrouting method and an empty source ad-
dress, because this call should not be routed through any
of the feature boxes of the caller or callee. It will be routed
through target features of the resource, if any.

The setup signal of the new call carries the identi-
fier of a script that the resource should work from. The
script acts as a flowchart combining announcements and
prompts to be played to the caller, decisions made by the
caller through touch tones, and recording sessions.

When a QT box has established an internal call to a re-
source, it connects the voice channel to the caller with the
voice channel to the resource, so that voice flows between
those endpoints in both directions, as shown in Figure 6
(left). If QT places an outgoing call, then QT tears down
the call to the resource and connects the voice channel of

its incoming call to the voice channel of its outgoing call
(figure right).

A box programmer needs two main primitives to con-
trol media channels: a primitive tolink two media-channel
endpoints together within the box, as shown in Fig-
ure 6, and a primitive tohold a media endpoint within
a box, which means keeping the media channel open even
though there is no media flow at the moment [15]. Binary
links are sufficient even for conferencing, because con-
ferencing applications always connect all the participants
individually to aconference bridge, as shown in Figure 7.
A conference bridge is a media server that mixes all its in-
put channels and sends the mix to all its output channels.

IB

Conference
Controller

bridge

conference

Figure 7: A Conference Controller feature box connects
all the participants to a conference bridge.

A typical media-related feature interaction in other ar-
chitectures is as follows. Alice will participate in a confer-
ence call today, and asks the conference server to call her
at her personal address when the conference begins. This
address subscribes to Find Me (FM), which is like Parallel
Ringing except that it tries different device addresses se-
quentially. Because FM can take some time to find Alice,
it first plays an announcement to the caller, “Please wait
while we find Alice for you.”

When the conference server (playing the role of caller)
receives the signals to open a voice channel for the
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announcement, it believes that Alice has answered the
phone. It prompts for the callee to enter a conference
code, times out, prompts again, and then disconnects the
call. Alice misses her conference.

DFC avoids feature interactions in this class by recog-
nizing that opening a voice channel and connecting to a
person are two different things. Often the former pre-
cedes the latter, because of the use of the voice channel for
signaling and control purposes. Confusion between these
things is avoided by having separate signals for them, with
avail being the “connected to a person” signal.4

A second class of media feature interaction is caused by
the fact that feature boxes use the voice channel for IVR
dialogs independently. Consequently, there is a danger
that two features in a usage might attempt to use the voice
channel to the same user at the same time.

The majority of IVR dialogs are triggered when the box
receives a setup signal from upstream or an outcome sig-
nal (avail or unavail) from downstream. Contention for
the voice channel is easily avoided by a convention that
the triggering signal is a token that confers the right to use
the voice channel. If a feature box wants to use the voice
channel, it must complete its IVR phase before forward-
ing the token signal [14].

A third class of media feature interaction is illustrated
by Figure 8. A, B, and C are phones, while R is an IVR
server; interface boxes are omitted. A subscribes to Call
Waiting (CW), and is using it to switch between far parties
B and C. The figure is a snapshot in which C is selected,
so CW is connecting the voice channel to A with the voice
channel to C.5

CW PC

B

CA

R

Figure 8: A media feature interaction resolved by prox-
imity in the usage graph.

At the same time, C called A with the help of a pre-
paid card. The account on the card is exhausted, so the
Prepaid Card (PC) feature box has interrupted C’s voice
connection to the far party, put the far party on hold, and

4Being connected to a voice mail recorder is an adequate substitute
for a person in most cases (Section 4.1), but is not adequate in the pres-
ence of Parallel Ringing (Section 4.3). This is typical of the subtleties of
feature interaction.

5More precisely, CW is connecting A to the far party reached through
the call on its right, as opposed to the far party reached through the call
on its bottom.

is connecting C to an IVR server through which C can
authorize payment. This is a feature interaction because,
from the viewpoint of CW, A is talking to a far party. It is
only because of the presence of PC that A is on hold.

In DFC the management of this feature interaction is
automatic and obvious from the figure: PC has priority
over CW in controlling the voice channel to C because
PC is closer to C in the usage graph than CW is. CW only
has the power to connect A to B, or to leave A on hold in
the PC box. Note that these feature interactions cannot be
resolved by the token convention because they occur after
the last token signal (avail) has been sent by one device
and received by another.

A fourth class of media feature interaction concerns dif-
ferent media channels of the same call. Bandwidth limita-
tions could constrain the number and type of media chan-
nels that can be used simultaneously. There is not enough
experience with multimedia features to discuss this issue
yet.

4.5 Data interactions

Subscription data need not be static. A user could turn a
feature off and on by unsubscribing and subscribing, re-
spectively, though a Web interface. The time of day could
also be used to alter subscriptions automatically.

To prevent feature interaction through operational data,
this data is usually partitioned by subscriber address and
feature, so only one feature box type on behalf of one sub-
scriber can access a particular datum.

It is also possible to partition data less strictly, for ex-
ample by subscriber address only. A subscriber’s address
book could safely be accessed by all the feature boxes
of that subscriber. One feature might even add an entry,
which another feature ultimately uses. This is a very indi-
rect and benign feature interaction.

The partitioning constraint is also softened by the fact
that, as an increment of functionality, a feature is some-
times implemented by more than one box type. For ex-
ample, Anonymize Target and Anonymize Source in Sec-
tion 4.3 are both required for anonymous email.

The current trend is towardconvergedservices that
have both telecommunication and Web aspects. Web ser-
vices are naturally data-intensive, and provide the most
convenient and popular user interface to data. For exam-
ple, all the services we have built have Web user interfaces
to DFC subscription and operational data.

We plan to investigate converged services, data modu-
larity, and data feature interactions as aspects of a single
research topic. This makes more sense than treating DFC
operational data differently from Web-services data, espe-
cially in a converged environment.
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5 Brief notes on implementation

Although this paper is not much focused on implementa-
tion, it makes sense to say a little about how DFC is now
implemented. These notes will make some comparisons
and evaluations more intelligible.

SIP [10] is the dominant signaling protocol for IP mul-
timedia services. Because telecommunication devices and
other network elements use SIP, DFC implementations
must interoperate with SIP.

DFC is independent of system architecture, because the
feature boxes of a DFC usage can be located anywhere. If
two adjacent boxes are on the same host, then the signal-
ing channel of the DFC internal call between them will be
implemented with software queues. If two adjacent boxes
are on different hosts, then the signaling channel between
them will be implemented with a network connection.

Consequently, one possible implementation architec-
ture is to implement all the feature boxes subscribed to
by a device address in the software of the device itself
[3]. But there are many situations in which this architec-
ture is undesirable or impractical, so that device feature
boxes must be implemented in network servers calledap-
plication servers. Even if all devices implement their own
features, there are many abstract addresses whose features
must be implemented in application servers because there
is nowhere else to put them. So most usages will be dis-
tributed over telecommunication devices and one or more
application servers.

Our first implementation of DFC [2] ran in an applica-
tion server created just for this purpose. Both subsequent
implementations of DFC have run within commercial or
open-source SIP application servers, to make use of their
performance, reliability, and operational conveniences.

The SIP Servlets API is a standardized way of program-
ming SIP application servers, offering “servlets” as func-
tional modules. In our second DFC implementation (the
first one on a SIP Servlet container) the entire DFC run-
time environment was packaged in one servlet.

In our third and current implementation, individual
servlets simulate DFC feature boxes. To implement DFC
internal calls between boxes in the same SIP Servlet con-
tainer, we use SIP in a stylized way that approximates the
DFC protocol. We have persuaded the community that
a DFC-like router is the best way to perform application
composition, so that DFC routing is now enabled by all
SIP Servlet containers [9], and an open-source DFC router
for SIP Servlet containers is freely available.

By far the most difficult part of implementing DFC on
the Internet is implementing media flow and control. DFC
conceptualizes media streams as passing through feature
boxes, because that is the best way to understand them
and to specify what behavior is required. This point is
illustrated by Figure 8. On the Internet, however, it is

necessary to make a distinction between signaling chan-
nels and media channels. Signaling channels need to go
through application servers; as they are low-bandwidth,
this is not a problem. Media channels are high-bandwidth
and should take the most direct route between media de-
vices. It is too inefficient to route media packets through
one or more application servers, which may be located far
from either media device.

The result of this situation is a difficult problem of dis-
tributed control. Media flow must be implemented by in-
structing the media devices to send media packets directly
to one another through the Internet. These instructions
come from feature boxes like Call Waiting and Prepaid
Card, which prescribe different media flows in their dif-
ferent states. These feature boxes do not know about one
another. Yet the instructions received by media devices
must correctly reflect thecompositionof the states of all
relevant feature boxes.

Our first implementation simplified this problem by
solving it in a separate, but centralized, component to
which all feature boxes report their states [4]. We have
since found an efficient, completely distributed solution
for DFC [15], and are adapting it for use within SIP [6].

6 Experience and evaluation

6.1 Experience

Our experience with DFC began with design and imple-
mentation of several service prototypes, for demonstration
and trial use within AT&T. Lessons from the most ambi-
tious of these are captured in [16].

In 2003 were were given the opportunity to develop the
advanced features for AT&T’s first consumer VoIP ser-
vice. For the first trial, we specified, implemented, and
delivered eleven features two months from the inception
of the project. This feature set included such challenging
features as Parallel Ringing, Ten-Way Calling, and Mid-
Call Move. We also implemented voice mail. System
testing and subsequent trials revealed very few bugs in the
feature server. In 2004 the service went public, winning
two industry awards citing its voice quality and advanced
features. By 2005 the service was supporting close to
100,000 customers [1].

This unprecedented speed and quality of development
was possible because of separation of concerns. Differ-
ent people could safely and independently work on differ-
ent features at the same time. With the DFC architecture
providing structure, overlapping tasks could also be per-
formed in parallel. For example, once we had an informal
specification of each feature, feature implementation and
analysis of feature interactions could proceed at the same
time. Feature interactions were managed mostly by prece-
dence and occasionally by small feature changes.
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The second major system built with DFC is the tele-
conferencing service now used internally by AT&T. On a
typical workday, the service handles millions of minutes
of calls. It was originally designed for our second imple-
mentation of DFC, and is now being re-engineered for our
third implementation of DFC, with interesting differences
between them. As with the consumer VoIP service, there
have been very few post-deployment bugs in the feature
code [5].

6.2 Failures of modularity

As anyone with software experience will expect, DFC
modularity is not perfect. The independence of features
is not always as complete as the overview of Section 3
implies. As an example of a typical exception, consider a
Call Log (CL) feature that writes a record of each incom-
ing call to its subscriber’s operational data. The record
should show if the caller talked to the subscriber, recorded
a voice message, or neither.

CL must precede Record Voice Mail (RVM) in the sub-
scriber’s target zone, because once RVM receivesunavail
from downstream it tears down its downstream call (if
not torn down already) and downstream boxes disappear.
However, theavail and subsequent teardown signals sent
upstream by RVM do not tell CL whether the caller left
a message or not. The only way to provide the desired
interaction between CL and RVM is for RVM to send
a special-purpose signal or signal field to CL indicating
whether it recorded a message. In this case interaction be-
tween these two features must be programmed explicitly
into both features.

This example illustrates the problem of status signals,
which is the one part of DFC that does not feel “settled.”
Built-in status signals such asavail andunavail provide
a common language for communication among features.
They support modularity because a feature can react to
such a signal without knowing whether it came from a
user or another feature. More status signals means more
modularity. For example, if “message recorded” were part
of the built-in signal vocabulary, then CL and RVM would
be independent. On the other hand, the more built-in sig-
nals there are, the more work it is to program each feature,
and the harder it becomes to give each signal a feature-
independent meaning.

Arguably the worst failure of DFC modularity con-
cerns treatments (call forwarding, call queueing, interrupt,
voice mail) for failure (busy, no answer) when there are
multiple zones within a target region. From Section 4.3,
we assume that the zones of more abstract addresses pre-
cede the zones of more concrete addresses. Because fail-
ure signals travel upstream, the most concrete features re-
ceive them and act upon them first. Abstract features re-
ceive failure signals only when concrete features cannot

fix the failures.
Failure treatments, and the situations in which failures

arise, are a big subject. Suffice it to say that sometimes
the most abstract feature should be triggered first. This
behavior can be achieved in various ways (Answer Con-
firm, shorter timeouts in the more abstract features, ex-
plicit cooperation among features at different levels of ab-
straction), but all of them can be seen as subverting the
native mechanisms of the architecture.

Finally, a designer should be able to use any legacy
component (with a suitable purpose and interfaces) as a
feature box program. This is not always possible, because
an unfortunate grouping of functions may include func-
tions with different natural places in the precedence order.
The result is that the precedence relation becomes over-
constrained, i.e., cyclic. The easy fix is to separate the
feature implementation into two box programs.

6.3 Modularity successes

Despite occasional exceptions, DFC modularity has
proven to be very successful. All of the experience re-
lated in Section 6.1 indicates that it is intuitive and ef-
fective from an engineering viewpoint. It supports fast
development and quality code.

For evidence of a different kind, consider Hall’s study
of feature interactions in 10 common email features [7].
Of the 26 undesirable interactions identified by Hall, 14
have something to do with address representation, address
translation, or feature application. All 14 of these are di-
agnosed by, and could be prevented by, the DFC tech-
niques for managing feature interactions caused by ad-
dress translation [13].

The original purpose of DFC modularity was to support
easy development of features as additions or exceptions
to a basic telecommunication service. In keeping with
common practice, customers could subscribe to features
individually, making each one optional. An interesting
lesson learned from all our experience is that DFC seems
to provide “all-purpose” modularity: it works fairly well
regardless of what functions are being decomposed into
modules, or why the decomposition is desired. In addi-
tion to the expected purpose, we have so far identified
many other (somewhat overlapping) purposes served by
DFC modularity.

First, a feature can be an addition or exception, not to
the basic service, but to another feature. This is illustrated
perfectly by the addition of Answer Confirm to solve a
problem with Parallel Ringing.

Second, as with other forms of modularity, DFC mod-
ularity can insulate a system from the effects of probable
change. In our teleconferencing service, we prototyped
features that we ended up dropping, because their value
was not sufficient to justify their user complexity and re-
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source costs. Because they were optional modules, they
were trivial to remove. We also used feature boxes to
encapsulate uncertainty concerning which vendor’s me-
dia resources would be used. The content of these boxes
most closely resembles a software library [5].

Third, many box programs are re-usable modules. For
example, consider a Call Forwarding on Failure program
with two parameters: a forwarding address and a type of
failure (because unavail signals can have failure types at-
tached). This program can be used to implement a variety
of features, including RVM (on any failure, forward to
voice mail resource) and Redirect on No Answer. In both
deployed services, we re-used several box programs from
earlier prototypes.

Fourth, a feature box can easily be inserted into a us-
age as an adaptor. Adaptors can enhance the re-usability
of other box programs [5]. DFC feature boxes used as
adaptors are extremely valuable for solving problems in
other technologies, because they are powerful and quick
to deploy. Integration testing of the consumer VoIP ser-
vice revealed many integration problems, due to immature
vendor-supplied components, inadequate standardization,
and innate deficiencies in other technologies such as SIP
[1]. We were able to fix many of these problems immedi-
ately by building software adaptors. Having such adaptors
as separate modules is advantageous because they can be
removed easily from the software when technologies and
standardization improve.

Finally, off-the-shelf servers or other components can
be treated as feature boxes and composed with other
features. When consumer VoIP migrated to a vendor-
supplied voice mail server, we were able to improve its
integration with other features significantly by treating it
as an idiosyncratic DFC resource. A subscriber can call
the server, listen to a message, enter a code, and have the
voice mail server call the person who left the message.
If that call from the server is routed by DFC as coming
from the subscriber, then the ensuing usage contains the
subscriber’s source-region features such as Ten-Way Call-
ing and Mid-Call Move. If the call from the server is not
routed by DFC, the subscriber does not have his normal
features available.

6.4 Analysis of feature interactions

The first step in managing feature interactions is to an-
alyze each box program in a feature set to see if it has
interaction-prone behaviors such as generating signals
(Section 4.1) or translating addresses (Section 4.3). In-
dividual box programs are small, and this should be easy
to do [12].

The second step is to calculate all potential feature in-
teractions, based on these behaviors. The third step is to
classify each potential feature interaction as desirable or

undesirable. The fourth step is to derive from this infor-
mation, if possible, a set of precedence constraints that
enables all the good interactions and prevents all the bad
ones.

All steps but the third one are easily automatable, while
the third one relies on human knowledge of what goals the
features are intended to achieve. The real problem with
this straightforward approach, however, is that it gener-
ates too many potential feature interactions for a person
to pass judgment on. A practical approach must combine
heuristics, partial constraints, and dependencies to prune
the potential interactions. Then requirements engineers
will be able to find and consider the important ones.

A typical usage in the consumer VoIP service had at
least 20 different feature boxes [1]. The principles in Sec-
tion 4 separated concerns well enough to make manual
analysis possible for this service, but not ideal because of
the scope for human error. Other real feature sets could
be much larger because they could have many alternative
features from which subscribers can choose. Manual anal-
ysis will not be feasible for these larger feature sets.

We have not been able to do much work yet on auto-
mated analysis of feature interactions, because of our long
journey through the SIP jungle. When we emerge from it,
analysis will be high on our list of priorities.

Analysis of feature interactions is an opportunity as
well as a burden. The structures, properties, and princi-
ples used to manage feature interactions are a precious
kind of domain knowledge in their own right. Section 4
provides numerous examples of this.

6.5 Performance

Our current implementation of DFC runs on SIP Servlet
containers compliant with the new standard [9]. Both
our implementation and the containers are too new to say
much about performance, except that it does not seem to
be a pressing problem.

In general, we expect all forms of modularity to impose
overhead, and can accept that overhead if it is not exces-
sive. Early SIP Servlet containers expected to run exactly
one servlet per external call, rather than a chain with many
servlets, so their descendants may implement servlets in a
way that is too heavyweight for DFC modularity. If this
proves true, some targeted optimization of servers will be
necessary.

From the system viewpoint, a usage is a graph of de-
vices, application servers, and network connections. In
this context there is reason to believe that the DFC pro-
tocol is considerably more efficient than SIP [15]. The
conclusion is drawn from analyzing message traces rather
than measuring real deployments, however, so it cannot
be considered definitive.
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7 Conclusion

For telecommunication systems, DFC’s form of modular-
ity is a clear and proven success. Now our most pressing
research problem is to understand converged applications,
where the DFC architecture must interoperate with Web
services, which have a very different architecture. The
challenge is to compose the architectures in such a way
that each view has its own appropriate form of modular-
ity.

In practice, DFC will live on as a overlay structure im-
posed on SIP. In containers compliant with the new stan-
dard, SIP servlets can be programmed and invoked just
like DFC feature boxes, with the sole difference being the
protocol they must use.6 The early work on Boxtalk, a
high-level programming language for DFC feature boxes
[17], is now evolving into StratoSIP, a high-level program-
ming language for SIP servlets. StratoSIP restores much
of the simplicity of the DFC protocol by making the right
abstraction of SIP.

It appears that there are important Internet design is-
sues, and networked applications other than telecommu-
nications, that could benefit from the ideas in DFC. Inves-
tigating these relationships is another compelling area of
future research.
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