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CLASSIFICATION OF RESEARCH EFFORTS IN REQUIREMENTS ENGINEERING

I. PURPOSE OF THE CLASSIFICATION SCHEME

Requirements engineering is the branch of software engineering concerned with the real-world goals for,

functions of, and constraints on software systems. It is also concerned with the relationship of these factors to

precise specifications of software behavior, and to their evolution over time and across software families.

The subject of requirements engineering is inherently broad, interdisciplinary, and open-ended. It concerns

translation from informal observations of the real world to mathematical specification languages. For these reasons,

it can seem chaotic in comparison to other areas in which computer scientists do research.

This paper presents a classification scheme for research efforts in requirements engineering. For those readers

who are not familiar with requirements engineering, it is intended to provide an overview and a coherent framework

for further study. For those readers who do research in requirements engineering, it is offered in the hope that it

will:

• delineate the area and encourage research coverage of the whole area;

• provide structure to encourage the discovery and articulation of new principles;

• assist in grouping similar things, such as competing solutions to the same problem (these groupings would be
a great help in comparing, extending, and exploiting results).

The great difficulty in constructing such a classification scheme is the heterogeneity of the topics usually

considered part of requirements engineering. They include:

Tasks that must be completed: elicitation of information from clients, validation, specification.

Problems that must be solved: barriers to communication, incompleteness, inconsistency.

Solutions to problems: formal languages and analysis algorithms, prototyping, metrics, traceability.

Ways of contributing to knowledge: descriptions of current practice, case studies, controlled
experiments.
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Types of system: embedded systems, safety-critical systems, distributed systems.

A typical list of research topics in requirements engineering contains all these entries and more. It is intended to be

comprehensive, but it is also confusing.

The obvious way out of this difficulty is a classification scheme with several orthogonal dimensions. The

more dimensions the more precision, at the expense of making the scheme too complex to use. I have compromised

by settling on two dimensions, which are presented separately in the next two sections.

I have referenced a number of papers that illustrate the categories and issues discussed. A reference is nothing

more than an example; it is certainly not a claim that the referenced paper is the best or only work in its category! In

addition, Section IV presents some examples that do not fit neatly into the nominal categories, and shows how the

classification scheme sheds light on them as well.

II. FIRST DIMENSION: PROBLEMS OF REQUIREMENTS ENGINEERING

The first dimension is very particular to requirements engineering. It is an attempt to characterize the work

that needs to be done. It must somehow cover necessary tasks, recognizable problems, and proposed solutions,

without confusing the three.

Basing this primary dimension on solutions to problems seems like a bad idea, because it would discourage

developing alternative solutions to problems, or comparing different solutions to the same problem.

Tasks and problems are both plausible starting points, and indeed overlap quite a bit. A task can always be

described as a problem ("How can this task be accomplished satisfactorily?") and a problem can always be described

as a task ("Find a solution to this problem."). I prefer to use problems because they are more stable than tasks. After

all, the best solutions to problems make certain tasks unnecessary! In other words, a method is a proposed solution

to a problem, and a method dictates which tasks are performed.

Here is the first dimension of the classification scheme. Explanatory notes are interspersed.

1. Problems of investigating the goals, functions, and constraints of a software system

This topic includes all the problems of gathering information, analyzing information, and generating

alternative strategies. The longer requirements engineers work on solving these problems, the bigger the scope of

their work, because their stock of information and alternatives is always increasing.
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1.1. Overcoming barriers to communication

Requirements engineers have to talk to a wide range of people, with diverse backgrounds, interests, and

personal goals. How can they communicate well with people whose backgrounds, interests, and goals are different

from their own? And who may not know what they want from a computer system? Ethnographic techniques are

sometimes proposed as a solution to this problem [Goguen & Linde 92, Sommerville et al. 92].

1.2. Generating strategies for converting vague goals (e.g., "user-friendliness," "security," "accuracy,"

"reliability") into specific properties or behavior

For example, prototyping is often proposed for exploring the friendliness of a user interface. There are also

product-oriented [Harrison & Barnard 92] and process-oriented [Chung & Nixon 95] approaches to this problem

(see Section III for a definition of these terms).

1.3. Understanding priorities and ranges of satisfaction

Many requirements are not absolute; they can be satisfied partially, or only if resources permit. Requirements

engineers must obtain the information necessary to decide when and how to satisfy these requirements [Yen & Tiao

97].

1.4. Generating strategies for allocating requirements among the system and the various agents of its environment

The true requirements always refer to the real world in which the computer system will become embedded.

Before the software can be specified, goals, functions, and constraints must be allocated to the various components

and agents that will contribute to satisfying them [Alford 77, Dardenne et al. 93, Feather 87, Johnson 88].

1.5. Estimating costs, risks, and schedules

This is the other half of the information needed to handle optional requirements, which are generally satisfied

depending on development resources. Requirements engineers must estimate the resources needed, and be aware of

how reliable their estimates are [Matson et al. 94, Mukhopadhyay & Kekre 92].

1.6. Ensuring completeness

How can requirements engineers be sure that they haven’t left out any important people, viewpoints, issues,

facts, etc. out of their investigations? This is "completeness" in an informal sense [Reubenstein & Waters 91].

2. Problems of specifying software system behavior

This topic includes all the problems of synthesizing information and choosing among alternatives, to create a
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precise and minimal software specification. The longer requirements engineers work on solving these problems, the

smaller the scope of their work, because they are discarding alternatives and irrelevant information.

2.1. Integrating multiple views and representations

The results of investigation are likely to be diverse and to contain conflicts. Understanding, communication,

and negotiation are useful for reconciling conflicting viewpoints [Easterbrook 92]. Formal methods are useful for

composing diverse notations and for monitoring inconsistencies [Nuseibeh et al. 94, Zave & Jackson 93].

2.2. Evaluating alternative strategies for satisfying requirements

Work on 1.2, 1.3, and 1.4 may generate alternatives, from which the specific system behavior must be chosen.

Many of the papers cited in those sections also include evaluation strategies.

2.3. Obtaining complete, consistent, and unambiguous specifications

This is "completeness" in the formal sense of having no missing parts [Heimdahl & Leveson 96, Heitmeyer et

al. 96].

2.4. Checking that the specified system will satisfy the requirements

There are a variety of approaches to this well-known problem. They include inspections [Porter et al. 95],

execution and testing of the specification [Zave & Schell 86], and verification [Coen-Porisini et al. 94, Du Bois et al.

97].

2.5. Obtaining specifications that are well-suited for design and implementation activities

This is the problem of building into the specification qualities that will ensure successful software

development. Sometimes designs [Lor & Berry 91] or test cases [Weyuker et al. 94] can be generated automatically

or semi-automatically from a specification. Designs can also be checked for consistency with the specification

[Lefering 92].

3. Problems of managing evolution of systems and families of systems

The first two major topics treat requirements engineering as if it were an isolated and unique phase of

development. Of course, that is untrue. As systems evolve, they undergo many phases of requirements engineering.

The requirements engineering of each member of a family should not be independent of other family members. This

topic is concerned with the coordination of distinct requirements-engineering phases. It is concerned with how to

make the work done in a phase reusable, and how to reuse it in other phases.
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3.1. Reusing requirements engineering during evolutionary phases

In other words, this is the problem of ensuring that the artifacts of requirements engineering are maintainable.

Some proposed solutions to this problem are traceability (recording the relationship between aspects of system

behavior and the requirements that motivated them) [Leite & Oliveira 95, Ramesh et al. 95] and specification

modularity.

3.2. Reusing requirements engineering for developing similar systems

In other words, this is the problem of ensuring that the artifacts of requirements engineering apply to families

of systems. One example of a solution to this problem is conceptual modeling of an entire application domain [Lam

et al. 97, Maiden & Sutcliffe 92, Ryan & Mathews 92]. Another example is separation of user-interface concerns

from other concerns, so that the same "look and feel" can be provided across a product line.

3.3. Reconstructing requirements

This problem occurs when you want to reuse the artifacts of requirements engineering, but they are missing.

It calls for reverse engineering of requirements. Very little work has been done on this problem.

III. SECOND DIMENSION: CONTRIBUTIONS TO SOLUTIONS IN REQUIREMENTS ENGINEERING

The second dimension could also apply to other areas of software engineering. It is an attempt to characterize

the ways that research can contribute to solving problems. This dimension assumes that, as software engineers, we

can seek to understand social factors but we can only hope to influence technical practices.

A. Report on the state of the practice

This establishes a baseline from which others can work [Lubars et al. 92].

B. Proposed process-oriented solution

Some problems must be solved manually, because we do not know how to solve them automatically. We can

contribute to solving these problems by providing orderly methods and heuristics for making the decisions involved

[Goguen & Linde 92, Jackson 83]. These contributions are "process-oriented solutions," because they focus on the

manual process of requirements engineering.

C. Proposed product-oriented solution

Some problems can be solved automatically, in which case the emphasis is on formal representations and
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algorithmic manipulations of them. These contributions are "product-oriented solutions," because they focus on

representation and manipulation of the products of requirements engineering [Heimdahl & Leveson 96, Lefering 92,

Reubenstein & Waters 91].

Research on prototyping user interfaces would be classified 1.2, because it is addressing the problem of how

to make a system user-friendly. As an example of the difference between contributions B and C, if the research

emphasizes representation and automated implementation of interface choices and policies, then it would be a

contribution of type C. If the research emphasizes working with users to determine their preferences, then it would

be a contribution of type B.

As another example of the difference between B and C, of the two cited solutions to problem 1.1, one

[Goguen & Linde 92] is a contribution of type B, and the other [Sommerville et al. 92] is a contribution of type C.

D. Case study applying a proposed solution to a substantial example

A case study provides important evidence, but it is necessarily anecdotal [van Lamsweerde et al. 95]. Ideally

it would be done in preparation for a more systematic and objective evaluation of the proposed solution, as in E.

E. Evaluation or comparison of proposed solutions

To belong in this category, evaluation of a single proposed solution should be objective in some way ("I tried

it and I liked it" is not enough) [Maiden & Sutcliffe 92, Zave 91]. Naturally, a comparison of several solutions is

more likely to be systematic and objective. A controlled experiment with quantitative results is the ideal

contribution in this category [Porter et al. 95].

F. Proposed measurement-oriented solution

It is now widely accepted that an organization can improve its problem-solving simply by monitoring and

measuring how well it solves problems, and then tracking those measurements over time. Thus measurement of the

success of requirements-engineering activities can be viewed as a problem-solving technique in its own right, as well

as a means of comparing other solutions. For example, measurements of previous development projects help solve

problem 1.5. Measurements of customer satisfaction help solve problems 1.1, 1.2, 1.3, and 2.2. A readability metric

might help solve problem 2.4. Measurement can help solve 2.2 by checking the domain assumptions that were and

are used to make strategic choices [Fickas & Feather 95].
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IV. OTHER EXAMPLES

When a paper spans many categories in one dimension, it is usually narrowly focused in another dimension.

Sometimes the other dimension is also in this classification scheme. For example, [Reubenstein & Waters 91]

and [Porter et al. 95] both make contributions of a very specific kind. But their contributions—an intelligent

automated assistant and rigorous evaluation of inspection techniques, respectively—address many requirements

problems simultaneously, in a wide-spectrum fashion.

Sometimes the focused dimension is not in the classification scheme. I have deliberately neglected problem

solutions, so a paper focused on a solution technique might address several problems. For example, automated

translation of natural-language specifications into formal specifications [Ishihara et al. 92] is a solution that might

alleviate problems 1.1, 1.6, 2.1, 2.3, or 2.4. As such, it can be compared for effectiveness to drastically different

solutions to these problems, such as ethnography and executable specifications.

Another neglected dimension is that of application domain. For example, the A-7 method [Heninger 80,

Parnas & Clements 86, Parnas & Madey 95, van Schouwen et al. 92] is a comprehensive requirements method for

real-time process-control systems. It attempts to solve (or at least alleviate) almost all requirements problems within

the limits of that application domain.
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