This is page 1
Printer: Opaque this

An Experiment in Feature
Engineering

Pamela Zave

ABSTRACT Feature-oriented specifications must be constructed, vali-
dated, and verified differently from other specifications. This paper presents
a feature-oriented specification technique and a formal method applicable
to some of its specifications. The method is applied to an example specifi-
cation, and the results are evaluated.

1 Feature-Oriented Specification

A feature of a software system is an optional or incremental unit of function-
ality. A feature-oriented specification is organized by features. It consists of
a base specification and feature modules, each of which specifies a separate
feature. The behavior of the system as a whole is determined by applying
a feature-composition operator to these modules.

A feature interaction is some way in which a feature or features modify
or influence another feature in defining overall system behavior. Formally
this influence can take many forms, depending on the nature of the feature-
specification language and composition operator. A group of logical asser-
tions, composed by conjunction, can affect each other’s meanings rather
differently than a group of finite-state machines, composed by exchanging
messages on buffered communication channels.

In general, features might interact by causing their composition to be in-
complete, inconsistent, nondeterministic, or unimplementable in some spe-
cific sense.! Or the presence of a feature might simply change the meaning
of another feature with which it interacts.

Feature-oriented specification emphasizes individual features and makes
them explicit. It also de-emphasizes feature interactions, and makes them
implicit. Feature-oriented specification is widely popular because it makes
specifications easy to change and individual features easy to understand.
Feature-oriented specification is also easy to abuse by ignoring feature in-
teractions altogether.

1For example, in TLA [1] the result of feature composition could fail to be machine-
closed. The specification would be unimplementable because it requires the system to
control the environment’s choices.

2 Pamela Zave

Although the feature-oriented style of system description presents many
challenges to formal methods, it cannot be ignored because it is too attrac-
tive to the majority of people who actually describe systems. For example, it
is ubiquitous in the telecommunication industry (where the usual feature-
specification language is English, and the usual composition operator is
concatenation). As a result of this situation, problems of unmanageable
feature interactions affect all segments of the telecommunication industry,
and are the primary motivation for the industry’s interest in formal meth-
ods [2, 4, 5, 8, 3].

Two points about feature interactions are frequently misunderstood.
Since these misunderstandings make it impossible to talk about feature
interaction clearly, let alone formally, it is important to emphasize these
points at the outset:

e While many feature interactions are undesirable, many others are
desirable or necessary. Not all feature interactions are bad!

e Feature interactions are an inevitable by-product of feature modular-
ity.

“Busy treatments” in telephony are features for handling busy situations.
They exemplify these points. Suppose that we have a feature-specification
language in which a busy treatment is specified by providing an action, an
enabling condition, and a priority. Further suppose that a special feature-
composition operator ensures that, in any busy situation, the action applied
will be that of the highest-priority enabled busy treatment.

In a busy situation where two busy treatments B; and Bs are both
enabled, with By having higher priority, these features will interact: the
action of By will not be applied, even though its stand-alone specification
says that it should be applied. This feature interaction is intentional and
desirable. It is a by-product of the feature modularity that allows us to add
busy treatments to the system without changing existing busy treatments.
Without the special composition operator, when B is added to the system,
the enabling condition E; of B; must be changed to E; A —Es.

2 The Challenge of Feature Engineering

I am interested in helping people write good feature-oriented formal speci-
fications, a process I dub feature engineering. Figure 1 is a simple picture of
how feature engineering might be done. It assumes that a base specification
and old features already exist, and that the goal is to add new features to
this legacy.

To realize the process, we shall have to rise to many challenges. First and
foremost is the need for a truly modular formalism. A modular formalism
would facilitate and support the process of Figure 1 as follows:

1. An Experiment in Feature Engineering 3
base specification, old features

specify new features as if they were independent

plus new features

understand all potential feature interactions

plus potential interactions

decide which interactions are desirable and which not

plus decisions

adjust specification so features interact in only the desirable ways

FIGURE 1. A proposed process for feature engineering.

e It would be possible to specify almost any increment of functionality
as an independent feature.

e All diagnosed feature interactions would be meaningful. Feature com-
position would not generate trivial interactions.

e In most cases, the interaction choices could be implemented just by
making small changes to new features, leaving old features alone.

In the domain of telecommunication services, the DFC virtual architec-
ture has emerged as a means of specifying realistic systems with adequate
modularity. DFC will be introduced in the next section, and will serve as
the basis for the remainder of this paper.

The next challenge is posed by the second step of Figure 1. How do
we detect and understand all potential feature interactions? There appear
to be two major approaches. In the correctness approach, people write
assertions stating the intended behavior of the system as a whole, and
tools either help verify that the composed features satisfy the assertions,
or produce counterexamples. The structural approach only works if the
feature-specification language and composition operator constrain the ways
in which features can interact. In this approach, the possible structural
interactions are studied and classified. Then tools are developed to detect
their presence in a feature set.

The five workshop proceedings cited above contain many examples of
both approaches, used only, however, to detect undesirable feature interac-
tions. The structural approach has the definite advantage of being easier
on the user (correctness assertions for feature-oriented specifications are

4 Pamela Zave

particularly hard to write [9]). Yet the correctness approach appears to
be more comprehensive—there are examples of feature interactions that do
not seem feasible to detect with a structural approach. Presumably the two
approaches are complementary, and both will prove useful in the long run.

Yet another challenge is posed by the third step of Figure 1. Sometimes
the requirements on overall system behavior are clear. More often, a spec-
ifier is confronted with a range of possible behaviors and no clear criterion
for choosing among them. There has been little investigation of this prob-
lem, at least in the telecommunication domain.

This paper presents in detail a very modest, limited version of this
feature-engineering process. The modest method is then applied to a case
study, and the results are evaluated. One purpose is to begin the study
of feature interactions in DFC. Another purpose is to check whether the
new (at least to research in feature interaction) notion of desirable feature
interactions makes sense in practice.

3 A Feature-Oriented Specification Technique

Distributed Feature Composition (DFC) is a new modular architecture for
describing telecommunication services [7, 12, 13]. Hundreds of features and
services have been described informally within the DFC framework, and
we know of no services (including mobile and multimedia services) that
cannot be fit into the architecture. The following introduction to DFC is
just comprehensive enough for the case study, and is very incomplete.

In DFC a customer call generates and is responded to by a usage, which
is a dynamic assembly of bozes and internal calls. A box is a module, and
implements either a line/device interface or a feature. An internal call is a
featureless connection between two ports on two different boxes. Figure 2
illustrates a simple usage at two points in time.

In Figure 2 a DFC internal call is shown as an arrow from the port that
placed the call to the port that received the call. Each internal call begins
with a setup phase in which the initiating port sends a setup signal to the
DFC router, and the DFC router chooses a box and forwards the signal
to it. The receiving box chooses an idle port for the call (if there is one)
and completes the setup phase with a signal back to the initiating port.
From that time until the teardown phase, the call exists and has a two-way
signaling channel and a two-way voice channel.

Having full control of all the calls it places or receives, a feature box
has the autonomy to fulfill its purpose without external assistance. When
a feature box does not need to function, it can behave transparently. For
a box with two ports, both of which are engaged in calls, transparent be-
havior is sending any signal received from one port out the other port, and
connecting the voice channels in both directions. The two calls will behave

1. An Experiment in Feature Engineering 5

source zone target zone
ofa of b
r-—-———-—--—"-—" -~ -~ - - - - - —-—=-= al r-————---——-—-=- = -
1 o 1
Ll, F1 F2 F3 Fa F5 Ll
source zone target zone
ofa ofc
r-—-———-—-=-—-—" - - - - -—=-=-= - r-———-—-——-=-=-=-= -
| | | |
LI, F1 F2 F3 F4 F6 F7 Ll

FIGURE 2. Two snapshots of a linear usage.

as one, and the presence of the transparent box will not be observable by
any other box in the usage.

When its function requires, a feature box can also behave assertively, re-
routing internal calls, processing voice, and absorbing/generating signals.
To give a simple example, a Call Forwarding on No Answer box (box F/
in Figure 2) first makes an outgoing internal call to address b as shown in
the upper part of Figure 2. If CFNA receives a signal through its outgoing
call that b is alerting, and then no other signal for 30 seconds, CFNA tears
down its outgoing internal call and places a new outgoing internal call
whose target is the forwarding address c. The resulting usage is shown in
the lower part of Figure 2.

Most components of the DFC architecture are shown in Figure 3. The
line-interface boxes (LI) are connected to telecommunication devices by
external lines. The trunk-interface boxes (T1) are connected to other net-
works by external trunks. The feature boxes (F) can have any number of
ports, depending on their various functions. Internal calls are provided by
the port-to-port virtual network.

The router of the virtual network is unusual. It not only routes internal
calls to the destinations associated with their target addresses, as any net-
work router does, but it also “applies features” by routing internal calls to
and from feature boxes. For this reason it needs data on feature subscrip-
tions and feature precedences as well as normal configuration data. (All
global data is shown in double rectangles in Figure 3.)

Figure 3 also shows global data called operational data, which is used
by feature boxes. For example, the CFNA box retrieves its subscriber’s
forwarding address from operational data. Access to operational data is
strictly partitioned by features, so its use cannot compromise feature mod-
ularity. Operational data is used mainly to provide provisioned customer
information to features.

6 Pamela Zave

system

boundary - - - - -~ === === - ,
AN— Ll F ol 1
__external [— |
AW :LI E I... :
; port-to-port — |

N 1 virtual network operational

N :LI F |.. data

_____ ; S
externa | T A |
trunks ;TI ! — !
..... ! : F |... !
| subscrip prece- corfig- :
| tions | | dences |uration] = !

FIGURE 3. Components of the DFC architecture.

Each box fits into one of two large categories. A bound boz is a unique,
persistent, addressable individual. In Figure 2 the only bound boxes are
the two line interfaces. The other boxes in Figure 2 are free bozes, meaning
that each box is an anonymous, interchangeable copy of its type with no
persistence outside its tenure in a usage. The value of bound feature boxes
is that they make it possible to have joins in usage graphs (see Section 5.1).

The key to assembly of the necessary usage configurations is the DFC
routing algorithm. It operates on the setup signal that initiates each in-
ternal call. The setup signal has five fields of interest to the router; in
the form name: type they are: source: address, dialed: string, target: ad-
dress, command: {new,continue,update}, and route:seq routing_pair.
Each routing pair has a first component of type boz_type and a second
component of type zone = { source, target }.

We shall explain the function of the router by example, first describing
how the usage in Figure 2 evolved. The setup signal emitted by LI, had
a source field containing a, a dialed field containing the dialed string,
and a command field containing new. The other two fields were empty. Upon
receiving the signal, the router first extracted the target line address b from
the dialed string, and put it into the target field.

Next the router, instructed by new, computed a new route and put it
into the route field. Customer a subscribes to three features F1, F2, and F3
in the source zone, so the first three pairs of the route were (F1,source),
(F2,source), and (F3,source). The target address b subscribes to two
features F4 and F5 in the target zone, so the last two pairs of the route

1. An Experiment in Feature Engineering 7

were (F4,target) and (F5,target).

Now the router had finished manipulating the setup signal, and needed
to find a box to route the internal call to. It stripped the first pair off the
route, and since F1 is the type of a free box, it routed the internal call to
an arbitrary fresh box of that type.

The feature boxes in the upper part of Figure 2 had no initial need
to control the routing. So when each box prepared a setup signal for an
outgoing call, it simply copied the entire setup signal from its incoming
call, making sure that the command field had continue rather than new.
The continue command told the router not to recompute anything in the
route. The chain unfolded, one pair of the route being deleted as each free
box was added to the usage. Finally, in the last internal call, the route was
empty so the router routed to the bound box LI.

When the CFNA feature box (F4) made its second outgoing call, the
value of target in the setup signal was the forwarding address ¢. To en-
sure correct feature application, CFNA set the command value to update-
(target). This caused the router to remove from the route the remnants
of the target zone of b, and to replace them with a newly computed target-
zone route for ¢. Because of this substitution the usage was routed through
the target features of ¢ before reaching LI., as shown in the lower part of
Figure 2.

In constructing a route, the router uses a precedence relation governing
the order in which features can occur in a route (precedences are the only
place in a DFC system where features are related explicitly to one another).
This order, of course, has important effects on how features interact. For
example, a busy signal usually originates in the target interface box. So
the proper coordination of busy treatments mentioned in Section 1 would
be achieved by placing the higher-priority feature boxes later in the route,
i.e., closer to the source of their triggering signal. A busy treatment absorbs
and responds to a busy signal if its feature is enabled, and forwards the
signal toward the earlier feature boxes if it is not enabled.

The major source of modularity in DFC is that features communicate
with each other only through DFC internal calls. A feature box does not
know what is on the other end of its calls, for example, whether a far port is
associated with a feature or a user. So the feature box need not change when
its environment changes, for example by the addition of another feature.
At the same time, all the relevant signaling and media channels go through
the feature box, so the feature box has the power to manipulate them in
any way it finds necessary.

8 Pamela Zave

4 A Modest Method for Feature Engineering

4.1 Scope of the Method

Befitting its modest nature, the scope of this method is very narrow. It
applies only to voice services. It applies only to features whose sole box
type is that of a free, two-port feature box subscribed to in the target zone.
I call these free target features for short.

Furthermore, the method is only concerned with engineering interactions
among free target features, rather than interactions between free target
features and other features. This narrows the scope considerably, as there is
only one feature class to analyze, both for interaction causes and interaction
effects. Also, the precedence relation must cluster all free target features
together, so that their interactions are not interfered with by other features.

Finally, there are some detailed restrictions on the behaviors of free target
features and other features. Restrictions on other features are simply gen-
eral rules for good box programming, and are presented in a more detailed
report on this work [11]. Restrictions on free target features are presented
along with the relevant aspects of the method.

The method uses only structural detection of feature interactions. Thus
it can be applied to any set of free target features, without additional
knowledge of the requirements they are intended to satisfy.

Despite all these restrictions, the modest method covers an interesting
class of features, as the case study will show.

4.2 Semantics of Features and Feature Composition

In a feature-oriented specification using DFC, the base module describes
the DFC infrastructure (virtual network and routing algorithm) and the
system’s environment. The environment consists of lines, trunks, interface
boxes, and configuration data.

A feature module has a number of parts. The module of a free target
feature includes a program for the type of box used to realize the feature.
It also includes the subscription relation for the feature, encoding which
addresses subscribe to it (the subscriptions component in Figure 3 is the
union of all these relations). If the feature uses any operational data, it
includes the declaration and initialization of that data.

As far as free target features are concerned, the precedence relation is
simply a partial order on the features. It plays the role here of a parameter
to the feature-composition operator. I regard it as such because it explictly
relates features to each other, and thus does not fit well into any of the
specification modules.

The formal semantics of the specification is derived from a composition
of Promela and Z based on the transition-axiom method [10]. Our “mod-
est method” is so restricted in scope that the aspects of the specification

1. An Experiment in Feature Engineering 9

downstream
upstream signaling of
continuation call
caller f f f call ee_
por t ! 2 8 port
signaling of
external call
call ee_ call ee_ call ee_
ports ports ports

FIGURE 4. A configuration of ({f1, f2, f3}, P).

dependent on Z (primarily routing and operational data) have little rele-
vance. For present purposes, it is a reasonable approximation to say that a
feature-box program is a Promela? program. Accesses to operational data,
in the full box program reduce to nondeterminism in the Promela program.

When the DFC router needs an instance of a free feature box to route
an internal call to, it creates a new one. Thus an instance of a free target
feature box receives exactly one incoming call in its lifetime.

The method imposes constraints on the outgoing calls made by free target
features. A continuation call is an outgoing call that does not alter the
default routing in any way—source, dialed, target, and route fields
are unchanged, and command=continue. An external call is an outgoing
call that directs the usage completely out of the target zone of the feature
making the call. In the setup signal of an external call, the target field must
be different from the target field of the incoming setup, and the command
must be update (target). Each outgoing call of a free target feature must
be a continuation call or an external call. Also, a free target feature can
make at most one outgoing call.

Consider a set S of free target features to be composed under precedence
relation P. A configuration of (S,P) is a Promela program in which there is
a process for each feature in S, as shown in Figure 4, running its program.
The processes are arranged in a pipeline, connected by Promela channels
representing the two-way signaling channels of continuation calls. The order
of the processes in the pipeline is consistent with P, in the sense that if
f1 < fain P, f; must be upstream (left) of fs.

At each end of the pipeline is a nondeterministic port process capable of
all legal port behaviors. At the upstream end the port process places one
call. In Promela (with data fields omitted) it is:

2Promela is the specification language of the model checker Spin [6].

10 Pamela Zave

proctype caller_port(chan in,out)
{ out!setup;
if
inZ7upack; goto linked
in?quickbusy; goto end
fi;
linked: do
:: out'!other
:: out!teardown; goto unlinking
in?busy
in7alerting
in7answered
in?quiet
inZother
in7teardown; out!downack; goto end
od;
unlinking: do
in?busy
in7alerting
in7answered
in?quiet
inZ?other
in?teardown; out!downack
in?downack; goto end
od;
end: skip

}

The signals setup, upack, and quickbusy are used in the setup phase of
the call. The signals teardown and downack are used in the teardown phase
of the call. All other signals transmitted during the call are status signals.
The status signals busy, alerting, answered, and quiet are sent from
the callee end to indicate the status of the target. Status signals in the
catch-all category of other can be sent in either direction.

At the downstream end of the pipeline is a process specifying all behav-
iors of a port receiving one call. In Promela it is:

proctype callee_port(chan in,out)
{ end begin: in?setup;
if
: out'!upack; goto linked
:: out!quickbusy; goto end
fi;
linked: do
:: out!busy
:: outlalerting

1. An Experiment in Feature Engineering 11

out!answered

out!quiet

out!other

out!teardown; goto unlinking
in7other

in7teardown; out'!downack; goto end

od;
unlinking: do
in%?other
in?teardown; out!downack
in?downack; goto end
od;
end: skip

Figure 4 also shows that each feature process in a configuration has a
signaling connection to a callee ports process. These represent the two-
way signaling channels of (possibly a sequence of) external calls. A feature
process cannot be using both its continuation-call channels and its external-
call channels simultaneously.

The semantics of a Promela program is a trace set. If the free target fea-
tures satisfy all the constraints imposed by the method, then the semantics
of a set S of free target features composed under precedence relation P is
the union of the trace sets of all the configurations of (S,P). There is one
contributing configuration for each total order over S consistent with P.3

4.8 Syntax of Features

The feature-box programs in this paper are written in a shorthand notation
that expands to Promela. In the shorthand, a program is a finite-state
machine with some special annotations.

Most state transitions are associated with the sending or receiving of
signals. The actions of sending and receiving a signal of type v through
the upstream port are denoted up!wv and up?v respectively. The actions of
sending and receiving a signal of type v through the downstream port are
denoted down'!v and down?v respectively.*

The general form of a transition label is guard; action, where the guard is
a signal receive or predicate, and the action is a signal send or data update.
Labels can also have the degenerate forms guard; or action. A transition

3This definition does not mention the subscriptions relations in feature modules,
which will be considered later.

4In Promela code, the two signaling directions of a DFC port must be given different
names such as in and out. Here the channel name identifies only the DFC port, and the
symbol indicates the direction.

12 Pamela Zave

“ - up! busy(t)

FIGURE 5. Complete program for a transparent feature box.

is enabled when its guard is true or executable. Once a program enters a
state, it must take some enabled transition as soon as there is one.

Many signals have data fields. A send action such as up!v(t) uses the
value of the local variable ¢ to provide a value for the signal’s data field. A
receive action such as down?v(u) binds the value of the signal’s data field to
the local variable u. Predicates and data updates can refer to either local
variables of the box or operational data of the feature.

A box program always has a single entrance transition, implicitly labeled
up?setup(s,d,t,r) and giving the named local variables the values of the
source, dialed, target, and route fields respectively. The remainder
of the setup of the incoming call is implicit and atomic.

An attempt to place an outgoing call is also an atomic transition, rep-
resented by a forked arrow. The handle of the fork has an optional guard.
The solid tine of the fork leads to the success destination state. If the solid
tine is not labeled, as in Figure 5, a continuation call is being attempted. If
the solid tine is labeled with source, dialed and target fields, then an
external call is being attempted. The broken tine of the fork leads to the
state arrived at if the call attempt fails; the optional label of this tine is an
action to be taken in case of failure.

If a state has the annotation U, then the upstream port is engaged in a
call. If a state has the annotation DC or DX, then the downstream port is
engaged in a continuation or external call, respectively.

The teardown phase of a call is represented by an atomic transition on a
teardown signal. In every state in which a port is engaged in a call, there
must be a transition for the receipt of a teardown signal for that call. If the
transition is not explicit, then it is implicit. An implicit teardown transition
sends a teardown signal out of the other port, if it is engaged in a call, and
exits from the program.

In every state in which a port is engaged in a call, there must be a
transition for the receipt of every possible status signal from that call. If

1. An Experiment in Feature Engineering 13

the transition is not explicit, then it is implicit. An implicit status transition
forwards the status signal out of the other port, if the other port is engaged
in a call, and returns to the state from which it originated.

In every state in which a port is engaged in a call, the feature box can do
something with the voice channel of that call. Voice processing is specified
using state annotations, as described in Section 4.7. The default (no state
annotation) for a state in which only one port is busy is no voice processing
at all. The default (no state annotation) for a state in which both ports are
busy is to connect their voice channels in both directions.

Consistency checks are needed to ensure that this notation is used cor-
rectly; correct use is simply assumed here. The notation is designed so that
no feature box can deadlock its usage. It is also designed so that transparent
behavior is almost completely implicit, as can be seen from Figure 5.

4.4 Semantics of Feature Interactions

Intuitively the existence of a particular kind of feature interaction between
features f and g under partial order P on {f,g} means that f is capable
of a particular behavior, that this behavior is potentially observable by g
if the two are composed under an extension of P, and that this behavior
could have a notable effect on g.

For a definition of a feature interaction to be valid, it must not be possible
for a transparent feature box to play the role of either f or g. By definition,
a transparent box has no feature interactions. This means, for example, that
short signaling delays do not cause feature interactions.

The significance of such a feature interaction is that in the semantics of
feature set S composed under @), where {f,g} C S and P = {f,g} < Q>
{f,g} (P is Q restricted to {f, g}), there can be a trace in which f has this
notable effect on g. The existence of the interaction does not guarantee
the presence of the notable trace, since the context in which f and g are
embedded can make a notable trace infeasible. It is clear, however, that if
the interaction is not present the notable trace cannot be present.

Taking subscriptions into account does not affect the safety of this con-
cept. If a target address does not subscribe to all the features in a feature
set, then certain interactions diagnosed in the feature set might become
impossible, but no additional ones can become possible.

If engineers diagnose an interaction between f and g under P and judge
it to be bad, there are several things they can do. The easiest way to
prevent it is to compose f and g only under partial orders inconsistent with
P; this strategy is limited by the fact that it might lead to inconsistent
requirements (circularities) on Q. Another strategy is to prove by other
means that the interaction is a “false positive”—that the notable trace
is not in fact in the semantics of the feature set being studied. Another
strategy is to change f or g, which is attractive if the interaction is a result
of bad feature programming, and unattractive if the interaction is inherent

14 Pamela Zave

in the intended functions of f and g. Least attractive of all, engineers can
constrain subscriptions so that no address can subscribe to both f and g.

4.5 Feature Interactions Related to Calls

At any given time, a box’s downstream port can be idle, engaged in a
continuation call, or engaged in an external call. Engaging in a continuation
call is the transparent behavior, so both idleness and external calls are
potential sources of feature interaction. If a feature box fails to make a
downstream call, or makes an external call rather than a continuation call,
then the free target features that would have been downstream of this
feature in the usage will never be invoked—their functions will be cancelled.

This is our first feature interaction. Its definition requires two new con-
cepts. An all-solid initial path through a box program is a path that begins
with the entrance transition and follows only solid transition arrows (it
is not fair to count a broken arrow, representing a call attempt’s failure,
against the box). A sink state is a state with no transitions to other states
(all its transitions are self-loops or exit transitions).

Interaction 1 (Cancels) Feature f cancels feature g under partial order
P on {f,g} iff- g £ f, and f has an all-solid initial path to a sink state with
no DC annotation, and g is not transparent.

Presumably cancellation is good if the circumstances under which f can-
cels obviate the need for the function of g, and bad otherwise.

The retargeting feature interaction concerns both calls and status signals,
so it is defined in the next section.

4.6 Feature Interactions Related to Status Signals

The four public status signals busy, alerting, answered, and quiet are
known to all feature boxes as indications of the status of the target interface
box. Private status signals can also be introduced to provide customized
communication between an interface box and the features its address sub-
scribes to, or to send secrets between cooperating feature boxes. A status
signal generated by an interface box has a data field bearing the address of
that box. A status signal sent by a feature box bears the address received
in a corresponding signal, or the address of the box’s subscriber.

Every box program has a local variable status: {none, busy, alert-
ing, answered, quiet}.The value of this variable indicates the perceived
status of the downstream call (if any). It is initialized to none, and updated
automatically according to the signals received from downstream: a success-
ful setup phase changes it to quiet, receipt of a public status signal changes
it to the matching value, and a teardown changes it to none.

This local variable can be referenced in guards. A numerical guard such
as status=alerting(30) is not true until status=alerting has been true

1. An Experiment in Feature Engineering 15

generatev absorb v,
respond tov
up! v(t)
down?v(u);
absorb v,
respondtov,
generatew respond tov
down?v(u); down?v(u);
up! w(t) up! v(u)

FIGURE 6. Explicit transitions that over-ride implicit transitions.

for 30 seconds. The guard status=alerting((30)) is not true unless the
box has been in the same state, and status=alerting has been true, both
for 30 seconds.

Assuming that both ports of a box are engaged in calls, the box prop-
agates a signal of type v if the box receives the signal from one port, and
then, as a result of having received it, sends a signal of type v out the other
port. When a box handles a setup failure with up!busy, it is understood
to be propagating a busy signal.

A signal of type v is generated by a box if the box sends it without
having first received a corresponding signal of type v. If a box handles a
setup failure by sending a signal other than busy, it is understood to be
generating that signal.

A signal of type v is absorbed by a box if the box receives it and does
not propagate it. If a box handles a setup failure by sending no signal, it
is understood to be absorbing a busy signal.

A box responds to a signal of type v if v appears in a guard in its program
(up?v, down?v, status=v, etc.). Figure 6 shows explicit transitions that
generate, absorb, and respond to signals.

If a box makes an external call, then any box upstream of it may receive
status signals that came through the external call and were propagated
upstream. These signals indicate the status of some other target address
rather than the address that subscribes to the upstream features.

Interaction 2 (Retargets) Feature f retargets feature g under partial or-
der P on {f,g} iff. f £ g, and f has an all-solid initial path to o state
annotated DX, and g responds to some type of status signal.

Presumably retargeting is bad if the function of g pertains primarily

16 Pamela Zave

to its subscriber, and good if its function pertains primarily to the target
address reached by the usage.

There are two interactions defined purely on handling of public status
signals. Similar interactions can be defined concerning handling of private
status signals, but they would be more complex, as private signals can
travel in both directions while public signals travel upstream only.

Interaction 3 (Spoofs) Feature f spoofs public status signal type v to fea-
ture g under partial order P on {f,g} iff. f £ g, and f can generate a signal
of type v, and g responds to signals of type v.

Interaction 4 (Hides) Feature f hides public status signal type v from
feature g under partial order P on {f,g} iff. (1) f £ g, and f can absorb a
signal of type v, and g responds to signals of type v, OR (2) g £ f, and f
can generate a signal of type v, and g responds to signals of type v.

In the second kind of hiding, f generates a signal upstream that g might
like to see, but misses because g is (or might be) downstream of f. Spoofing
and hiding are neutral feature interactions—good if the composed features
work in the intended way, and bad otherwise. For example, the coordination
of busy treatments mentioned in Sections 1 and 3 is accomplished by hiding.

4.7 Feature Interactions Related to Voice

The voice-processing capabilities considered here are simplified, yet they
are adequate for the case study, and also representative of the true range
of voice capabilities.

If a state is annotated playU(file), then the specified voice file (an-
nouncement) is played in the upstream direction during that state. The
reserved guard end; becomes true when the playback is finished. A tran-
sition from the state with any other guard will discontinue playback if it
is still in progress. The voice signal traveling downstream is transmitted
transparently through the box.

If a state is annotated recU(file), then while the box is in that state, the
voice signal from upstream is being recorded in the specified file. The voice
signals traveling in both directions are transmitted transparently through
the box.

If a state is annotated monU[x,y,...], then while the box is in that
state, the voice signal from upstream is being monitored and analyzed
for recognizable patterns. The patterns must be specified separately, but
they are denoted symbolically by the vocabulary [x,y,...]. As soon as
a pattern x is recognized, the guard x; becomes true, and can cause a
transition out of the state. The voice signals traveling in both directions
are transmitted transparently through the box.

A common combination of state annotations can be seen in the largest
state of Figure 9. A recording is being played to ask the caller if the call is

1. An Experiment in Feature Engineering 17

urgent and to tell the caller how to answer “yes” or “no.” At the same time,
the voice signal from the caller is being monitored for the “yes” (urgent
and “no” (normal) patterns. If the caller is familiar with this feature, and
answers the question before it has been posed, then the announcement will
be aborted early.

If two different free target features are in playU states simultaneously,
then the downstream announcement will not be heard by the caller. The
downstream announcement signal will be discarded by the upstream box,
which is replacing it by its own announcement. This feature interaction,
called drowning, is always bad because the downstream box is not having
the effect it is expecting to have.

Interaction 5 (Drowns) Feature f drowns feature g under partial order
P on {f,g} iff. g £ f and both f and g have states with playU annotations.

To ensure that the caller’s line interface will transmit voice to the caller,
the line interface must receive answered before the announcement and no
other public status signal during it. The S state annotation (for seizing
the wvoice channel makes this easier to program. First, a box’s entry into
a state annotated S automatically generates an answered upstream. The
generated signal is sent after the guard and action of the in-transition, if
any, are both executed.

While the box remains in the S state, the program implicitly reads all
signals arriving at the downstream port, saves them in the order received,
and does not propagate any of them. The box’s status variable continues
to have the value it had just before state entrance (not answered).

Finally, on exit from the S state, all of the saved signals are propagated
upstream in the order in which they were received. Meanwhile, this box’s
status variable is being updated to match them. If no such signals were
received during the S state, then the box implementation generates an
upstream status signal to match the box’s status variable, and thus return
the upstream usage to the state it was in before this box entered the S state.
These signals are emitted by the box after the guard of the out-transition
is executed, and before the out-transition action is executed.

In addition to ensuring proper behavior of the caller’s line interface, the
upstream signaling provided by S notifies other features of the use of the
voice channel, and helps features coordinate to avoid drowning. Additional
details will be given in Section 5.2.

5 An Application of the Method

5.1 Feature Context

The upcoming set of free target features is designed for a customer who
also subscribes to a Call Multiplexing feature allowing him to switch among

|

18 Pamela Zave

fy f2 f3

CM LI

FIGURE 7. Usage with Call Multiplexing and free target features fi, f2, and fs.

a number of active customer calls simultaneously. The CM feature uses
a display on the subscriber’s telephone to identify the far party of each
customer call, so that the subscriber can keep them straight. The CM
feature joins box chains coming from or going to different customers, as
shown in Figure 7, so it is represented by a bound box.

Two instances of free target features are shown in Figure 7. The purpose
of the upcoming set of free target features is to provide flexible response
capabilities, covering especially those situations in which the subscriber
cannot answer an incoming customer call, or cannot answer it immediately.
Several features are triggered by private status signals, which I assume are
generated by function buttons on the subscriber’s telephone, and propa-
gated through the appropriate ports by CM.

5.2 A Set of Free Target Features

Selective Call Forwarding (SCF, Figure 8) is “selective” in the sense that
only calls from certain addresses are forwarded. It has two modes of use. It
can be activated ahead of time for address a by address b by establishing
SCF_activated(a,b) in the operational data, in which case an incoming
call is forwarded immediately to the forwarding address SCF_dest(a,b).
Alternatively, any time after the target subscriber has become aware of an
incoming call from a, he can send the private signal forward(c,b) and have
the call forwarded to c.

The Blocking with Urgent Calling Privilege (BUCP, Figure 9) feature
is most useful for mobile telephones, which may be carried into meetings,
concerts, and other places where a ringing telephone is disruptive. The
subscriber uses buttons on his telephone to set his BUCP_state (in the
operational data for the BUCP feature) to on, off, or Urgent Calls
Only (UCO). In the off state, all calls to this telephone are blocked. In
the UCO state, a call is accepted only if it comes from a privileged caller
and the caller designates it as urgent.

1. A Experiment in Feature Engineering 19

- SCF_activated(s, CF_activated(s,t);

up! busy(t) up! busy(t) (s, d,

SCF_dest (s, 1))

~

up! busy(t)

t = u;
down! t ear down

FIGURE 8. A program for Selective Call Forwarding.

From the initial state of the feature box, the left transition leads to
transparent behavior. The middle transition leads to blocking behavior;
note that an alerting signal is generated and sent upstream so that the
caller will not know that the call has been blocked. The right transition
leads to a state in which the feature box must find out whether the caller
considers the call urgent. The dialogue was described in Section 4.7. If the
call is urgent then the behavior of the box becomes transparent; otherwise
it blocks the call.

Outbound Messaging (OM, Figure 10) is “outbound” in the sense that
the subscriber has a message for the caller. It has two modes of use. It
can be activated ahead of time for address a by address b by establishing
OM_ready (a,b) in the operational data, in which case an incoming call from
a immediately hears the message in voice file 0M(a,b). Alternatively, any
time after the target subscriber has become aware of an incoming call from
a, he can send the private signal play (m,b) and have the voice file 0M(m,b)
played to a. Subscriber b’s message m has been prerecorded, and probably
says something like, “I will be able to answer your call in a moment, so
please don’t hang up.”

The final feature of the set is Inbound Messaging (IM, Figure 11). This
feature is both a no-answer treatment and a busy treatment. It absorbs
busy signals and generates alerting signals in their place, so that up-
stream boxes will perceive only alerting conditions. After a suitable wait,

20 Pamela Zave

BUCP_st at e(t) =on BUCP_state(t)=UCO O
BUCP_privil eged(s,t);

BUCP_st at e
~ (BUCP_statpe(t)=UCO O
o BUCP_privi|l eged(s,t));

U S
pl ayu
urgent _query),
nmonU[nor mal ,
urgent]

uplalerting(t)

up! busy(t)

FIGURE 9. A program for Blocking with Urgent Calling Privilege.

the IM feature plays an invitation to record a message, and monitors for a
signal of intention from the caller. Whether the caller decides to record a
message or not, he can stay on the line, and later perhaps be answered or
record another message.

If the callee answers during the prompting or recording states, IM’s work
must be interrupted to avoid drowning or recording the person-to-person
conversation. This is an explicit out-transition from an S state on a public
status signal, yet the out-transition rules from Section 4.7 work fine.?

The IM program illustrates an important point about DFC feature boxes.
Within each internal call, a target line interface would send upstream
exactly one of these sequences: <busy>, <alerting>, or <alerting,an-
swered>. Yet a DFC internal call can in fact experience any sequence what-
soever of public status signals traveling upstream. The reason is that the
sequence observable within an internal call is produced by the effects of
many feature and interface boxes downstream; the richer the feature set,
the more possible sequences.

For this reason, feature boxes must not be programmed to expect a
rigid, fixed-length sequence of public status signals. Rather, they must be
programmed cyclically, as IM is.

This also helps explain why the many implicit signals of the S annota-
tion pass for transparent behavior, and need not be analyzed for feature
interactions. S behavior produces a temporary answered state, in which

5Note also that in Figure 11 that there is a transition from one S state to another.
With respect to the S semantics, these states are not regarded as separate. The answered
signal is generated only on entrance to the S cluster, and the cleanup actions occur only
on exit from the cluster.

1. An Experiment in Feature Engineering 21

up! busy(t)

up! busy(t)
|

FIGURE 10. A program for Outbound Messaging.

other features do not act because they expect people to be talking, and
then restores the state of the usage to what it would have been without
the S state.

5.8 Analysis of the Feature Set

It is best to begin analysis with an empty precedence relation, and to ignore
drowning (which is always bad). This will give us a complete picture of the
potentially positive interactions, so that none of them will be missed. Ap-
plying the first four interaction definitions to our feature set, and assuming
an empty precedence relation, we get:

Interaction Judgment | Prevention
SCF cancels BUCP +
SCF cancels oM - OM < SCF
SCF cancels M - IM < SCF
BUCP cancels SCF — SCF < BUCP
BUCP cancels oM — OM < BUCP
BUCP cancels M — OM < BUCP
SCF retargets M +
BUCP spoofs alerting to IM —+
BUCP hides alerting from IM - IM < BUCP

22

down?answer ed(u) ;
up! answer ed(u)

Pamela Zave
down?busy(u);

IIal erting(u)

up! buisy(t) (status=busy 0O

status=al enting) ((30));

recu
new_nsg(t)),
nmonU[done]

(msg_query),
onU[r ecord,

record;

FIGURE 11. A program for Inbound Messaging.

The table also includes judgments of these feature interactions, based on
the following reasoning:

It is good for SCF to cancel BUCP, because forwarding obviates the
need for BUCP.

It is bad for SCF to cancel OM, because if there is an outbound
message for the caller, he should hear it before the call is forwarded.

It is bad for SCF to cancel IM, because IM might be useful in record-
ing a message if the forwarded-to target does not answer.

All cancellations by BUCP are undesirable, because a situation in
which BUCP blocks an incoming call is likely to be a situation in
which SCF, OM, or IM should cover the call instead.

It is good for SCF to retarget IM, because it enables IM to cover a
busy or no-answer condition even from the forwarded-to target.

It is good for BUCP to spoof alerting to IM, and bad for BUCP to
hide alerting from IM, because alerting triggers IM in situations
where a call is blocked by BUCP.

The table also includes precedences by which the bad interactions can be
prevented. The partial order {IM,0M} < SCF < BUCP preserves all the

1. An Experiment in Feature Engineering 23

good ones and prevents all the bad ones. Now applying the definition of
drowning to our feature set, and using this derived precedence relation, we
get:

Interaction Judgment | Prevention
OM drowns IM — IM < OM
OM drowns BUCP —
IM drowns OM - OM < IM
IM drowns BUCP -

Additional precedence constraints can only prevent one of these interac-
tions! However, if we choose IM < OM, then the remaining three diagnoses
can be shown to be false positives—there is no trace in which both features
are in a playU state longer than it takes for IM to respond to a signal
it receives. In [11] this was proven by detailed analysis of box behavior.
It could probably be established more easily by model checking, since the
partial order leaves us with only two configurations to check.

We now have a derived total order on the features that allows all the good
feature interactions and prevents all the bad ones. It was not necessary to
change any features. An exercise for the reader: think of a scenario in which
at least three of the features help handle the same incoming customer call.

6 FEvaluation of the Method

At least for this case study, DFC and the modest method for feature engi-
neering are a great success. For the most part features co-exist peacefully
and function independently, which is not considered to be interacting be-
havior. Diagnosis of interactions is very efficient, relying only on properties
of individual feature programs rather than on properties of feature com-
positions. All the known interactions among the features can be detected
automatically. The diagnosed interactions are relatively few and meaning-
ful, and easily judged to be good or bad. The desired result is achieved
without any loss of modularity.

At the same time, there are many limitations and reasons for caution.
The scope of the modest method is very narrow compared to the full range
of telecommunication services. Prolonged study of feature properties was
required to find a successful combination of box-programming conventions
and feature-interaction definitions. On the one hand, such study produces
valuable domain knowledge; on the other hand, it is difficult and also sus-
ceptible to being overly biased by the particular features being studied.

Although this case study does not suffer from them, inconsistencies (cy-
cles) in the derived precedence relation are a real problem. However, the
problem has many potential solutions. For example, in the case study both
SCF and OM have two modes of operation with different interaction charac-
teristics. If a cycle had been derived, very likely it could have been broken

24 Pamela Zave

by splitting one of these features into two features, one supporting each
mode of operation.

Future work is required to extend the scope of the method in general,
and to address certain weaknesses in particular. These weaknesses give rise
to the following questions:

e How can completeness of detection be ensured? Could there be three-
way feature interactions in linear usages?®

e Is it worthwhile to distinguish between desirable interactions that
are merely allowed and those that are required under certain circum-
stances? If so, how are the requirements enforced?

e How can the judgment and adjustment steps be supported by tools?
How can false positives produced by the initial interaction analysis
be discovered more easily?

To answer these questions, it will be necessary to understand each individ-
ual feature as a composition of multiple behavioral aspects.

7 Acknowledgments

Michael Jackson helped design the feature set of the case study; Manfred
Broy made many helpful comments.

8 REFERENCES

[1] Martin Abadi and Leslie Lamport. Composing specifications. ACM
Transactions on Programming Languages and Systems XV(1):73-132,
January 1993.

[2] L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in
Telecommunications Systems. 10S Press, Amsterdam, 1994.

[3] M. Calder and E. Magill, editors, Feature Interactions in Telecommu-
nications and Software Systems VI., I0S Press, Amsterdam, 2000.

[4] K. E. Cheng and T. Ohta, editors, Feature Interactions in Telecom-
munications Systems II1., 10S Press, Amsterdam, 1995.

[5] P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in
Telecommunication Networks IV. I0S Press, Amsterdam, 1997.

[6] Gerard J. Holzmann. Design and validation of protocols: A tutorial.
Computer Networks and ISDN Systems XXV:981-1017, 1993.

6Clearly branching usages can have three- or even many-way interactions.

[7]

(8]

[9]

[10]

[11]

[12]

[13]

1. An Experiment in Feature Engineering 25

Michael Jackson and Pamela Zave. Distributed feature composition:
A virtual architecture for telecommunications services. IEEE Trans-
actions on Software Engineering XXIV(10):831-847, October 1998.

K. Kimbler and L. G. Bouma, editors. Feature Interactions in Telecom-
munications and Software Systems V. I0S Press, Amsterdam, 1998.

Hugo Velthuijsen. Issues of non-monotonicity in feature-interaction de-
tection. In [4], pages 31-42.

Pamela Zave. Formal description of telecommunication services in
Promela and Z. In Manfred Broy and Ralf Steinbriiggen, editors, Cal-
culational System Design (Proceedings of the Nineteenth International
NATO Summer School), pages 395-420. I0S Press, Amsterdam, 1999.

Pamela Zave. Systematic design of call-coverage features. AT&T Lab-
oratories Technical Memorandum, November 1999.

Pamela Zave and Michael Jackson. DFC modifications I (Version 2):
Routing extensions. AT&T Laboratories Technical Memorandum,
January 2000.

Pamela Zave and Michael Jackson. DFC modifications II: Protocol
extensions. AT&T Laboratories Technical Memorandum, November
1999.

