
Validation of Formal Models: A Case Study

Pamela Zave1[0000−0002−6568−2052] and Tim Nelson2[0000−0002−9377−9943]

1 Princeton University, Princeton NJ, USA, pamela@pamelazave.com
2 Brown University, Providence RI, USA, tbnelson@gmail.com

Abstract. A valid formal model is well-defined in the portion of the real
world being modeled, and relevant to the system-development project it
is intended to support. This paper explains in depth what makes a formal
model valid, and shows its critical importance in formal methods for
system development, including program verification. The paper is based
on a classroom presentation [8] of the well-known Peterson algorithm for
locking in concurrent systems [23]. The paper shows how to formalize
this case study in Alloy [10], and uses it to present a list of manual and
automated techniques for validating formal models.

Keywords: formal methods · Alloy · Peterson lock

Dedication

This paper is dedicated to Cliff Jones, colleague, mentor, and friend. His in-
fluential invention of rely/guarantee reasoning is a well-developed and practical
tool that has introduced the idea of domain modeling to many practitioners and
developers of formal methods.

1 Introduction

One of the oldest sayings about computing is still one of the best: “garbage
in, garbage out.” This saying is equally true when the computer program is a
verification tool, the input is a formal model of a computer system, and the
output is verified assertions. A verified assertion is garbage if it is ill-defined or
irrelevant in the real world of the computer system being modeled. Despite the
excellence of today’s verification tools, their output is, too often, garbage.

The process of ensuring that the input to a verification tool is not garbage,
and thus will not result in garbage output, is validation. Validation is checking
that a formal model is valid, meaning that it has at least the two properties
shown in Figure 1. Accuracy refers to the relationship between the real world
and all modeling abstractions: the abstractions must be faithful descriptions of
the real world, whether they are intended to match the real world as it is now or
as it should be. There are two kinds of abstractions, those in peoples’ heads and
those encoded in formal languages. Comprehensibility refers to the agreement
between mental and formal abstractions: do the formal abstractions mean what
the people working with them think they mean?

2 P. Zave and T. Nelson

the
real

world

mental
abstractions

formal
model and

its tools

models,
abstractions

accurate?

comprehensible?

Fig. 1. The two essential questions answered by validation.

Because of the importance of mental abstractions, validation must be at
least partially informal, but it can be assisted greatly by formal analysis and
verification. Accuracy and comprehensibility are minimal criteria, and are often
augmented with many others for an expansive definition of validity.

Informally, validation attempts to answer the questions, “Does this model
mean what I think it means, and is that meaning faithful to the real world?” In
considering what a formal model means, we rely on the framework summarized
in §2. The crucial point of this framework is that there must be a separation
between the domain or environment that motivates the need for a computer
system, and the system that interacts with the domain to fulfill that need. In
our experience most cases of invalid3 formal models are due to flawed or inade-
quate modeling of the domain. This paper illustrates the power of good domain
modeling in building good formal models.

While this seems to be a straightforward prescription for improvement, it may
not be so easy to apply. Many published examples of domain/system separation
are cyber-physical, where the domain is a collection of physical phenomena and
the stand-alone system controls them in some way (see Jones’s discussion in [16]).
In contrast, most software development is concerned with adding something to an
enormous base of existing code. In the latter case, the interface between domain
and system lies deep in the semantics of the programming infrastructure. The
domain is already formal in some sense, being constructed from digital logic,
but this fact is of little use. In practice its behavior is far too complex to model
completely, and much of it is unknown to the system developer.

The purpose of this paper is to provide an example of validating a formal
model of a new software system designed to interact with an existing software
system. We hope the example will serve multiple purposes. It provides a tem-
plate for modeling some software domains, and also for modeling domain/system

3 In the software-engineering sense of meaningless or irrelevant, not in the mathemat-
ical sense of not being a valid assertion.

Validation of Formal Models 3

boundaries found in code. The example should serve as a tutorial on formal
methods, and—most importantly—as an introduction to validation.

First, §2 summarizes the framework for associating meanings with formal
models. Next, §3 introduces the the case study, and the following four sections
present the case study as a sequence of models. Finally, §8 summarizes the val-
idation steps applied, and §9 discusses the overall conclusions about validation.
This paper has room to show only fragments of the formal models, but the
complete set of formal models can be found online [29].

2 A framework for formal modeling

The framework is drawn from three related papers on requirements engineering
[12, 13, 28]. These papers introduce a method for deriving the specification of a
computer system from its domain and requirements. Software-development pro-
cesses today are more diverse, and various situations are constrained in different
ways, so decisions must sometimes be made in a different order. Nevertheless,
even though software development might not follow the method of these papers,
the artifacts and relations they define are completely general and form a powerful
framework for understanding the meanings of formal models.4

To be clear, it is necessary to distinguish between meaning and formal se-
mantics as they are used here. Our favorite formal method is the combination
of state-transition systems and temporal logic, as exemplified by Alloy, Event-B,
TLA+, process algebras, and many others. In these related formalisms, a model
is a state-transition system and its semantics is a set of traces.

Knowing the semantics of a model is not enough to know its meaning, which
also includes how it corresponds to the real world. And without knowing its
meaning, it is impossible to tell whether it is an accurate and comprehensible
formal description of real or hypothetically real phenomena, i.e., whether it is
valid. The simplest example of the difference concerns the primitive terms in the
formal model. The meaning of the model depends on designations, which are
natural-language descriptions of how instances of these primitive terms can be
identified in the real world. In this paper, designations are spread throughout
the text. Another, even more important, aspect of meaning will be discussed
later in this section.

The artifacts of the Jackson/Zave framework are illustrated by Figure 2.
A domain or environment is the portion of the real world, digital or not, that
motivates the need for a computer system. The system is the computer system
(hardware or software) that we are interested in, and that interacts with the
domain in a purposeful way. All other terms are relative to these two.

Figure 2 is a Venn diagram over the universe of all phenomena. It shows that
the domain and system usually contain different phenomena, but they always
have some shared phenomena, which is their interface.

The specification S is the part of the formal model that constrains the behav-
ior of the system. Ultimately there will be an implementation M that produces
4 In the literature, the framework is commonly referred to as the Jackson/Zave model.

4 P. Zave and T. Nelson

Interface

DOMAIN SYSTEM

Implementation M:
how the system

behaves

Speci�cation S: how the system should behave,
as observed at its interface

Domain Knowledge D:
how the domain
behaves (by
itself)

Requirements R:
how the domain should
behave, with the system in place

Fig. 2. The artifacts of a formal model. The Venn diagram represents sets of phenom-
ena. Arrows indicate which phenomena are described or constrained by an artifact.

this behavior when enacted by one or more computers. Ideally either the spec-
ification is simpler and more comprehensible than the implementation, or the
specification is efficiently executable so that S and M can be the same. The di-
agram illustrates one important way in which the specification can be simpler
than the implementation: it is confined to the phenomena of the interface, which
are part of the domain as well as part of the system.

Domain knowledge D is the part of the formal model that constrains how the
domain behaves all by itself, without the influence of the system. Requirements
R are the part of the formal model that describes how the domain should behave,
with the system implemented and installed.

Semantically, a formal model is nothing more than a set of constraints on its
constants and variables, whose values must satisfy all the constraints at all times.
The most important way to attach meaning to a formal model is to say, for each
constraint, why it is or should be true. In other words, what enforces or will en-
force the constraint? In this framework, we attach meaning to each constraint by
identifying it as domain knowledge, requirement, specification property, or im-
plementation property. The real-world domain enforces the domain knowledge,
and the implementation will enforce the specification.

In software engineering, automated reasoning was first used for the purpose of
program verification, which is proving that an implementation satisfies its speci-
fication. In validation, automated reasoning has other—equally important—uses.
We need to know that domain knowledge D and the specification S are consis-
tent, because if they are not, the system cannot work as specified. Most impor-
tantly, we need to know that D and S together imply (enforce) the requirements
R. This tells us that if the system is developed according to its specification, it
will do the job it is intended to do. The case study will also show other ways in
which verification tools can help in validation.

Even for program verification, a valid domain model may be essential. For
example, rely-guarantee reasoning, pioneered by Jones [14, 15] and elaborated
by Jones and many others [7], is a pillar of program refinement and verifica-
tion. It is motivated by the fact that programs running concurrently with their

Validation of Formal Models 5

environments often rely on assumptions about their environments (domains).
Rely-guarantee reasoning shows how to incorporate parts of a formal domain
model into proofs of program correctness.

For a much deeper and broader view of domain modeling than these brief
definitions allow, you should read [11].

3 The case study

The subject of our case study is the well-known two-party Peterson lock used
in multiprocessor programming [23]. Our presentation follows a class lecture by
Herlihy [8], which presents the algorithm in a sequence of three versions, each
written in Java.

In the case study, the domain consists of two user programs, each running
in its own thread, and sharing a resource. The system to be developed is a lock
program called by the user programs to enforce mutual exclusion with respect
to accessing the resource.

The formal models in the case study are written in Alloy [10], and use the
Alloy Analyzer Version 6, which incorporates linear-time temporal logic, for
formal reasoning (see alloytools.org). Due to lack of space, this paper will
explain the case study but not the Alloy language itself.

As we present the case study, we show how to address three challenges. The
first challenge is converting from a program to a state-transition system, so that
temporal logic can be used for specification and verification. Although there are
many stylistic differences, the most important difference is that programming
languages have built-in control mechanisms (e.g., method call and return, waiting
by looping until a while condition fails) while state transitions rely exclusively
on action preconditions for control.

The second challenge is to organize the model according to the Jackson/Zave
framework, with a clear separation between the domain (as motivation for a
software-development project) and the system (as the goal of the project). Be-
cause our example is very simple, the separation may seem grandiose and over-
done, but this seems better than using an example that is more complex.

The third challenge is to validate the formal model. Herlihy’s lecture tells
us some things about preliminary versions of the lock. Our goal, reproducing
validation in a real development project, is to discover errors without the help
of an oracle. It is also important to note that the errors are realistic. Except for
the known problems with preliminary versions of the lock, we committed all the
modeling errors ourselves!

4 First version: Lock 1

4.1 States

In creating a state-transition model, the first thing we think about is its state.
We don’t know or care what the user programs do, except that in accessing

6 P. Zave and T. Nelson

the shared resource they have three states: Uninterested (in using the shared
resource),5 Waiting to use the resource, and InCritSec (in a critical section ac-
cessing the resource). Figure 3 shows the state of each user program and how it
changes over time in a typical scenario.

In Lock 1 there is a Lock object with a flag for each of the two threads. The
flags are represented by a set flagRaised containing the identifiers of all flags
now raised. Figure 3 also shows the state of the lock and how it changes over
time. As seen in the figure, the basic idea of Lock 1 is that user programs call
Lock methods lock and unlock to enter and leave their critical sections. When
lock is called it puts the identifier of the calling thread in flagRaised. The call
returns when and only when the caller’s flag is the only one raised. After using
the resource, the user program calls unlock, which lowers its flag and returns
immediately. As shown in Figure 3, if a thread is waiting for the lock, then the
other thread’s unlock will end the waiting.

USER PROGRAM WITH
THREAD T0

USER PROGRAM WITH
THREAD T1LOCK

progState =

Uninterested

Uninterested

Uninterested

Waiting

Waiting

InCritSec

InCritSec

progState =

Uninterested

�agRaised =

{ }

{ }

{ T0 }

{ T0, T1 }

{ T1 }

call lock (T0)

call lock (T1)

lock return

lock return

call/return unlock

call/return unlock

time

Fig. 3. A sample trace showing how Lock 1 works. Arrows show the flow of control of
a thread as time passes.

On our first try, the state declarations and initial state in Alloy 6 look like
this, with domain state and system state labeled:

sig Thread {}

abstract sig ProgState {}

5 This state is often named Idle, but the program need not be idle—it can be busy
doing something other than accessing the shared resource.

Validation of Formal Models 7

one sig Uninterested, Waiting, InCritSec extends ProgState {}

one sig Progs { var progState: Thread -> one ProgState } -- domain

one sig Lock { var flagRaised: set Thread } -- system

pred initialState {
Thread = 2 -- domain
Progs.progState = Thread -> Uninterested -- domain
no Lock.flagRaised } -- system

Members of the primitive set Thread serve as thread identifiers, as used by the
operating system. The model has a Progs object containing a progState variable
that is a function from threads to states of the user programs. For each thread,
progState maps the thread to the current state of the program that the thread
is running. Initially, all programs are Uninterested, and no flag is raised.

4.2 Actions

In a state-transition model, actions represent atomic changes to the model state.
This means that all parts of an action are executed instantaneously, and cannot
be interleaved with anything else. This assumption is obviously not true in the
real world of this case study, and eventually we will need to check its validity—is
it a safe approximation, or does it lead us into big mistakes? Figure 3 suggests
that three actions can be considered atomic: callLock, lockReturn, and unlock
(call and return together).

In the model, each action has a predicate expressing its enabling condition,
and a predicate expressing its state change. Busy waiting in the lock program
is replaced by the enabling condition on lockReturn, which says that t’s flag is
raised and the other thread’s flag is not raised. In these actions, control of the
thread as it passes between user and lock programs remains implicit.

pred callLockEnabled [t: Thread] { -- action initiated by domain
t.(Progs.progState) = Uninterested }

pred callLock [t: Thread] {
callLockEnabled [t]
Progs.progState’ = Progs.progState ++ (t->Waiting) --update prog state
Lock.flagRaised’ = Lock.flagRaised + t } -- raise flag

pred lockReturnEnabled [t: Thread] { -- action initiated by system
Lock.flagRaised = t }

pred lockReturn [t: Thread] {
lockReturnEnabled [t]
flagRaised’ = flagRaised -- no flag change
Progs.progState’ = Progs.progState ++ (t->InCritSec) } --update state

pred unlockEnabled [t: Thread] { -- action initiated by domain
t.(Progs.progState) = InCritSec }

8 P. Zave and T. Nelson

pred unlock [t: Thread] {
unlockEnabled [t]
Progs.progState’ = Progs.progState ++ (t->Uninterested) --update state
Lock.flagRaised’ = Lock.flagRaised - t } -- lower flag

Because Alloy 6 is based on linear temporal logic, it is necessary to express
which traces we want as instances of the model. A trace is an instance if its
initial state satisfies initialState, and its subsequent states are the results of the
three actions.

pred delta { some t: Thread |
(callLock [t] || lockReturn [t] || unlock [t]) }

pred anyTrace { initialState && always delta }
run anyTrace expect 1

Finally, there are requirements on how the domain should behave, with the
lock implemented and the user programs using it. Fortunately, the requirements
on a two-party lock are well known and easily expressed in temporal logic:

pred mutuallyExclusive { # (Progs.progState).InCritSec <= 1 }
assert mutualExclusion { anyTrace => always mutuallyExclusive }
check mutualExclusion -- VERIFIED

pred nonDeadlocking { some t: Thread |
(callLockEnabled [t] || lockReturnEnabled [t] || unlockEnabled [t]) }

assert noDeadlocks { anyTrace => always nonDeadlocking }
check noDeadlocks -- VERIFIED

pred nonStarvation { all t: Thread |
t.(Progs.progState) = Waiting =>

eventually t.(Progs.progState) = InCritSec }
assert noStarvation { anyTrace => always nonStarvation }
check noStarvation -- VERIFIED

The expect 1 annotation on the command run anyTrace says that there should
be traces that satisfy anyTrace. We run the Alloy Analyzer, and that is true.
The tool also verifies the requirements (within a bounded scope, which will be
discussed later), so everything looks great! We have a working lock design!

4.3 A little validation

Well, maybe, just in case, we should try a little validation. In this paper valida-
tion steps fall into three categories: (i) There are general-purpose checks, that
apply to many (if not all) models, especially models of concurrent systems. (ii)
There are checks that the domain and system are kept properly separate. If a
constraint is partly enforced by the domain and partly by the system, it will be
extremely difficult to understand and work with. (iii) There are checks on the

Validation of Formal Models 9

validity of the domain model, which tend to be especially powerful. Validation
steps are numbered, and listed under those numbers in Table 1.

The first three validation steps are general-purpose.
(1) In this model, every action should define the variable values in the post-

state completely. This we check “manually,” i.e., by inspecting the model. The
Alloy style updates each of the two state relations progState and flagRaised all
at once, so it is unnecessary to have separate “frame conditions” to say, “the
state of the other thread does not change.”

(2) Whenever a model has separate state components, and we expect their
values to be correlated, it is worth checking that they are correlated. This can be
done in Alloy by defining a state invariant and asking the Analyzer to verify it.
When explicit proofs are being constructed (which is not necessary in the Alloy
context), this is often the first step of a proof.

assert stateInvariant {
anyTrace => always
(all t: Thread |

t.(Progs.progState) = Uninterested => t ! in Lock.flagRaised
&& t.(Progs.progState) = Waiting => t in Lock.flagRaised
&& t.(Progs.progState) = InCritSec => t in Lock.flagRaised) }

check stateInvariant -- VERIFIED

(3) The third validation step is a check that control in the model works as
intended. In the real world, each thread executes a sequence of actions. In the
model, this translates to the expectation that in each thread, at any time, only
one action is enabled. This is encoded in the following assertion:

assert sequentialControl {
anyTrace => always
(all t: Thread |

! (callLockEnabled [t] && lockReturnEnabled [t])
&& ! (callLockEnabled [t] && unlockEnabled [t])
&& ! (lockReturnEnabled [t] && unlockEnabled [t])) }

check sequentialControl -- NOT VERIFIED

As the comment shows, the model is not valid in this respect. The Analyzer
provides a counterexample showing that lockReturnEnabled and unlockEnabled
can both be true at the same time, for the same thread. This is an important
departure from reality, and there is no telling what mischief it might cause as
versions of this model evolve.

In the real world, whenever lockReturn is enabled, unlock for the same thread
cannot be enabled because the lock program has control of the thread. So the
real problem here is that the domain and system are not well-enough separated,
making it unclear when the domain or system can initiate an action. This means
that control of the thread should be modeled explicitly. To model control, we add
a third state relation, which is now the interface between domain and system—
both sides can observe it, and whichever side has control can give it up. A thread
is in the set runningProg if and only if it is running the user program rather than

10 P. Zave and T. Nelson

the lock code. Here is the new state and its initialization, new actions, and a
new invariant:

one sig Progs { var progState: Thread -> one ProgState, -- domain
var runningProg: set Thread } -- interface

pred initialState { . . .
Progs.runningProg = Thread . . . } -- added to initialState

pred callLockEnabled [t: Thread] { -- precondition on domain
t.(Progs.progState) = Uninterested && t in Progs.runningProg }

pred callLock [t: Thread] {
callLockEnabled [t]
Progs.progState’ = Progs.progState ++ (t -> Waiting) -- domain update
Progs.runningProg’ = Progs.runningProg - t -- interface update
Lock.flagRaised’ = Lock.flagRaised + t } -- system update

pred lockReturnEnabled [t: Thread] { -- precondition on system
Lock.flagRaised = t && t ! in Progs.runningProg }

pred lockReturn [t: Thread] {
lockReturnEnabled [t]
flagRaised’ = flagRaised -- no system change
Progs.runningProg’ = Progs.runningProg + t -- interface update
Progs.progState’ = Progs.progState ++ (t -> InCritSec) } --dom update

pred unlockEnabled [t: Thread] { -- precondition on domain
t.(Progs.progState) = InCritSec && t in Progs.runningProg }

pred unlock [t: Thread] {
unlockEnabled [t]
runningProg’ = runningProg -- no apparent interface change,

-- but interface actually changes twice, once after each state update
Progs.progState’ = Progs.progState ++ (t -> Uninterested) --dom update
Lock.flagRaised’ = Lock.flagRaised - t } --sys update

assert stateInvariant {
anyTrace => always
(all t: Thread |

t.(Progs.progState) = Uninterested =>
(t in Progs.runningProg && t ! in Lock.flagRaised)

&& t.(Progs.progState) = Waiting =>
(t ! in Progs.runningProg && t in Lock.flagRaised)

&& t.(Progs.progState) = InCS =>
(t in Progs.runningProg && t in Lock.flagRaised)) }

The validation check sequentialControl can now be verified.
(4) Having modeled thread control, we can check more thoroughly that the

domain and system are kept as separate as they should be. The rules for this
model are as follows: (i) Pure domain state can be read or written only when the
domain has control of the thread. (ii) Pure system state can be read or written
only when the system has control of the thread. (iii) Interface state can be read

Validation of Formal Models 11

or written at any time. The interface variable runningProg is well-defined, even
though it can be changed by either system or domain, because it can only be
changed by one action at a time.

This validation step is a manual check, the results of which are recorded in
the comments on the new action model above. For example, callLock is initiated
by the domain, and callLockEnabled reads only a domain variable and an inter-
face variable. Within the action predicate callLock, the domain state changes,
then the method call transfers control to the lock code, then the system state
changes. The comments are important because the updates within the action are
sequential only in our interpretation of the model’s meaning, not in the model’s
formal semantics.

4.4 Domain behavior

(5, 6) The last two validation steps for Lock 1 are focused on the domain. It is
always important to validate that the domain can do what it is expected to do or
allowed to do, even when it is interacting with the system. We think of desired
scenarios, encode them in predicates, then ask the Analyzer to instantiate the
predicates. Here the first scenario is that each user program requests the lock
eventually, at its own time. The second scenario is that both user programs
request the lock at almost the same time, so that both callLock actions execute
before either lockReturn can execute, and both users become Waiting.

pred bothProgsRequestLock [disj t0, t1: Thread] {
anyTrace
eventually t0.(Progs.progState) = Waiting
eventually t1.(Progs.progState) = Waiting }

run bothProgsRequestLock expect 1

pred thereIsContention [disj t0, t1: Thread] {
anyTrace
eventually Thread.(Progs.progState) = Waiting } -- both progs waiting

run thereIsContention expect 1 -- INCONSISTENT

Note the way this domain knowledge and the requirements complement each
other. This domain knowledge says that the programs will request the lock. The
requirements say that when a program requests the lock, it will get the lock.

However, the second scenario cannot be instantiated, which is bad news—it
means that, for some reason, the model is very unrealistic. But why? The actions
don’t look suspicious.

One part of the model that has not received much attention yet is the def-
inition of anyTrace. If we look at it carefully and think about exactly what it
means, it is saying that in any trace of this model, in any state, the enabling
condition for one of the actions is true, and that action occurs. In other words,
it is stating formally that there can be no deadlocks! The fact is that in Lock
1, contention causes a deadlock, and thereIsContention cannot be instantiated
because an instance of this model cannot deadlock.

12 P. Zave and T. Nelson

There is an alternative explanation having to do with the fact that Alloy 6
does not allow finite traces, but only infinite traces with finite representations
(“lasso traces” terminating in loops). A deadlock stops all execution, resulting in
a finite trace. Because a deadlock (in the strictest sense) results in a finite trace,
no deadlock (in this strictest sense) can ever be part of the formal semantics
(trace set) of an Alloy 6 model.

We think ours is a much better explanation because it is about the meaning
of the model, rather than the details of some tool or temporal logic. Temporal
logics with finite traces are much used in some areas of computing [5], and some
model checkers allow finite traces [9].

The validation problem is fixed with the addition of a “stuttering step”
doNothing to delta. This new action is enabled only when no other action is
enabled. This allows a deadlocking trace to end in a loop of doNothing actions.

pred doNothingEnabled { all t: Thread | (
! callLockEnabled[t] && ! lockReturnEnabled[t] && ! unlockEnabled[t]) }

pred doNothing {
doNothingEnabled && runningProg’ = runningProg &&
progState’ = progState && flagRaised’ = flagRaised }

pred delta { some t: Thread |
(callLock [t] || lockReturn [t] || unlock [t] || doNothing) }

Now we have a final version of Lock 1. With this version, noDeadlocks and
noStarvation cannot be verified, which is the truth because Lock 1 can deadlock
and starve.

5 Second version: Lock 2

Lock 2, as presented by Herlihy, has a different mechanism with a different lock
state:

one sig Lock { var polite: lone Thread } --polite is one or zero threads

pred initialState { . . .
no Lock.polite . . . } -- replaces initialization of Lock.flagRaised

The callLock [t] action sets the value of polite6 to t. The other two actions
leave it unchanged. The all-important precondition to the lockReturn action is

pred lockReturnEnabled [t: Thread] { -- precondition on system
Lock.polite ! = t && t ! in Progs.runningProg }

This means that when a client program calls lock [t0], the call can return
only when, after t0’s call, the other thread calls lock [t1], thus setting the value
of polite to t1. Because unlock does not change polite, it is an action of the user
program only. Figure 4 shows the typical behavior of Lock 2.
6 Presentations of this idea often call the polite thread the “victim;” we believe that

“polite” more accurately conveys the intuition, while also being less alarming.

Validation of Formal Models 13

USER PROGRAM WITH
THREAD T0

USER PROGRAM WITH
THREAD T1LOCK

progState =

Uninterested

Uninterested

Waiting

Waiting

InCritSec

InCritSec

progState =

Uninterested

polite =

T0

—

T0

T1

call lock (T0)

Waiting
call lock (T0)

call lock (T1)

lock return

lock return

unlock

time

Fig. 4. A sample trace showing how Lock 2 works.

(7, 8) The model of Lock 2 satisfies all the previous validation checks. Yet it
seems strange, doesn’t it? This inspired us to come up with two other domain
scenarios for validation. In the first scenario, one thread dies for some reason and
never again requests the lock. Because there can be no contention, in a fault-
tolerant system, the other thread should continue to work and access the shared
resource freely. In the second scenario, there is no shared resource, so neither
thread ever calls on the lock.

pred faultTolerantBehavior [disj t0, t1: Thread] {
anyTrace
eventually always t1.(Progs.progState) = Uninterested
always eventually t0.(Progs.progState) = InCritSec }

run faultTolerantBehavior expect 1 -- INCONSISTENT

pred noSharedResource [disj t0, t1: Thread] {
anyTrace
always t0.(Progs.progState) = Uninterested
always t1.(Progs.progState) = Uninterested }

run noSharedResource expect 1 -- INCONSISTENT

The Analyzer reports that faultTolerantBehavior is not possible with Lock 2,
which pinpoints the problem with it: for a thread to continue entering a critical
section, it needs the other thread to also be interested and take turns with it. As
with the early models of Lock 1, all the requirements are verified, but because
the model is not valid, verification does not mean that the requirements are
actually satisfied.

14 P. Zave and T. Nelson

The inconsistency of noSharedResource is different—why can’t this scenario
occur? The answer goes back to the discussion of stuttering steps in §4. Be-
cause our model includes only uses of the lock, if the lock is not used, then a
trace must consist of nothing but stuttering steps. Yet the current definition of
doNothingEnabled disallows stuttering when any other action is enabled. If we
go to the other extreme and allow stuttering in any state, then it will not be
possible to prove progress properties. The right answer for this problem is to
allow stuttering when callLock is enabled, so that using the lock is optional, and
to disallow stuttering when the locking mechanism has something to do. So the
best domain model, allowing the true freedom of the domain, has the following
definition, and then noSharedResource can be instantiated.7

pred doNothingEnabled { all t: Thread |
! lockReturnEnabled[t] && ! unlockEnabled[t] }

6 Requirements in Versions 1 and 2

(9) The requirements for Lock 1 can be found in §4.2. The requirements in Lock
2 look exactly the same as for Lock 1, with the qualification that noDeadlocks de-
pends on lockReturnEnabled, which is different in the two models. The definitions
of lockReturnEnabled are different in the two models because each is dependent
on its lock implementation, which is unfortunately because the requirements
then deprive designers and developers of full engineering freedom. Requirements
should constrain only domain phenomena (including the domain/system inter-
face, which is shared between them).

Here is new version of noDeadlocks, without the problem of dependence on
the implementation, i.e., dependence on part of the system that is not also part
of the domain. noStarvation is also rewritten, for convenience.

pred nonDeadlocking [t: Thread] {
t.(Progs.progState) = Waiting =>

eventually t.(Progs.progState) = InCritSec }
assert noDeadlocks {

anyTrace => some t: Thread | always nonDeadlocking [t] }
check noDeadlocks -- NOT VERIFIED

assert noStarvation {
anyTrace => all t: Thread | always nonDeadlocking [t] }

check noStarvation -- NOT VERIFIED

Now noDeadlocks and noStarvation have the same form, the only difference
being whether there is always progress for one thread or for both. This makes
a very interesting change: formerly noDeadlocks was a safety property, but now
7 You might think that basic modeling questions such as these (What is a trace? Can

it be finite? Are there stuttering steps?) should have a single standard answer, but
in fact the answers are problem-dependent.

Validation of Formal Models 15

it is a progress property! This is not so strange if you think about viewpoint.
To an omniscient observer the property is safety—the observer can see into the
implementation state, and whenever the implementation reaches a certain state,
there is a deadlock. A user program (domain) is not omniscient, however, and
all it observes is that it called lock, which is taking a very long time to return—a
progress problem.

For this particular model the two forms of the noDeadlocks property seem to
be equivalent, in that each implies the other. This is not always the case. Consider
a different domain in which callLock forks the thread, so that a user program can
continue working on other tasks while waiting for lockReturn. Further, imagine
that the user program can time out if it has been waiting too long, and call a
lock method to withdraw its request for the lock. In this case noDeadlocks as
defined by a bad state (the safety property) would always be satisfied by Lock
1, but noDeadlocks as defined by progress in at least one thread would not be.

7 Version 3: The Peterson lock

In a very direct sense, Lock 3, known as the Peterson lock, is the sum of Locks
1 and 2. More specifically, it maintains all the state of both locks. The crucial
precondition of lockReturn, which allows a client program to enter its critical
section, is satisfied if either the precondition of lockReturn in Lock 1 is satisfied,
or if the precondition of lockReturn in Lock 2 is satisfied. In this way, the Peterson
lock combines the advantages of the previous two, and allows each one to make
up for the disadvantages of the other. It passes all of the validation checks so
far, and satisfies all the requirements!

7.1 A true specification

As with any case study, we have to think about how its ideas would hold up in a
much larger, more complex real development project. In this context, a limitation
of the models of Locks 1 and 2 is that they lack a proper specification, visible to
the system and yet independent of the lock implementation (e.g., the difference
between Locks 1 and 2). To show what a true specification might look like in
this simple example, in Lock 3 the interface is extended with the system’s own
version of progState, called lockState. Because this variable is specification only,
it need not be implemented.

one sig Lock { var lockState: Thread -> one ProgState, -- interface spec
var flagRaised: set Thread, -- system only
var polite: lone Thread } -- system only

pred initialState { . . .
Progs.progState = Thread -> Uninterested -- domain only
Lock.lockState = Thread -> Uninterested . . . } -- interface

Now the system maintains lockState as a copy of progState. The callLock
action is a typical example:

16 P. Zave and T. Nelson

pred callLockEnabled [t: Thread] { -- precondition on domain
t.(Progs.progState) = Uninterested && t in Progs.runningProg }

pred callLock [t: Thread] {
callLockEnabled [t]
Progs.progState’ = Progs.progState ++ (t -> Waiting) -- domain change
Progs.runningProg’ = Progs.runningProg - t -- interface change
Lock.lockState’ = Lock.lockState ++ (t -> Waiting)

-- system changes interface state
Lock.flagRaised’ = Lock.flagRaised + t -- system change
Lock.polite’ = t } -- system change

The requirements are unchanged. However, there is now a specification that
looks very similar to the requirements, except that it refers to interface phenom-
ena only. Notice that the specification does not constrain the lock implementa-
tion in any way.

pred systemMutuallyExclusive { # (Lock.lockState).InCritSec <= 1 }
assert systemMutualExclusion { anyTrace => always systemMutuallyExclusive}
check systemMutualExclusion -- VERIFIED

pred systemNonDeadlocking [t: Thread] {
t.(Lock.lockState) = Waiting

=> eventually t.(Lock.lockState) = InCritSec }
assert systemNoDeadlocks {

anyTrace => some t: Thread | always systemNonDeadlocking [t] }
check systemNoDeadlocks -- VERIFIED

assert systemNoStarvation {
anyTrace => all t: Thread | always systemNonDeadlocking [t] }

check systemNoStarvation -- VERIFIED

In §2 we mentioned the proof obligations that are central to validation. The
Lock 3 model already shows that the domain model and the specification are
consistent, because the specification is verified, and the model has traces il-
lustrating domain behaviors. The other obligation is that the specification is
sufficient, meaning that if the implementation satisfies the specification and the
implementation is installed in the domain, then the requirements will be satis-
fied.

(10) Because the Lock 3 model has a locking mechanism and satisfies both
requirements and specification, it hides whether the specification alone is suffi-
cient. To check this, we made another model version that stripped out the locking
mechanism, leaving only the domain model, interface included. Not surprisingly,
this model fails on most requirements and specification properties.8 To check
sufficiency, we then verified the following assertions:

assert sufficientMutexSpec { anyTrace =>
((always systemMutuallyExclusive) => (always mutuallyExclusive)) }

8 Because the no-lock lock returns immediately from all calls, it never deadlocks.

Validation of Formal Models 17

check sufficientMutexSpec -- VERIFIED

assert sufficientNostarvSpec { anyTrace =>
((all t: Thread | always systemNonDeadlocking [t])
=> (all t: Thread | always nonDeadlocking [t])) }

check sufficientNostarvSpec -- VERIFIED

The assertions are saying that if any trace satisfies a specification property,
it also satisfies the corresponding requirement. The assertions would not be true
for any model, but they are true for this one, because the domain model ensures
that progState and lockState are always equal.

7.2 Atomicity

(11) With Lock 3 comes a new general-purpose validity concern, which is whether
model actions can be executed atomically by the implementation. In an im-
plementation, flagRaised and polite might be represented by three variables: a
Boolean for each thread indicating whether its flag is raised, and a thread identi-
fier for polite. The callLock action changes two of these variables. The lockReturn
action (in its precondition) reads two of these variables (assuming it does not
also read the flag Boolean for its own thread). And all three variables can be
read or written concurrently by actions of the other thread. Given that multi-
processors usually provide atomicity only at the level of accesses to individual
memory cells, it does not seem that these actions are guaranteed to be atomic
in the implementation.

The only way to have a truly valid model in this situation is to split up
actions into smaller actions that can be guaranteed atomic. Now the expanded
interface comes in handy, because the set ProgState can be extended with a new
member Waiting2. The extra member will help the new lock model coordinate
its extra actions. Now the former callLock action becomes a sequence of two
actions:

pred callLock1Enabled [t: Thread] { -- precondition on domain
t.(Progs.progState) = Uninterested && t in Progs.runningProg }

pred callLock1 [t: Thread] {
callLock1Enabled [t]
Progs.progState’ = Progs.progState ++ (t -> Waiting) -- domain change
Progs.runningProg’ = Progs.runningProg - t -- interface change
Lock.lockState’ = Lock.lockState ++ (t -> Waiting) -- interface change
Lock.flagRaised’ = Lock.flagRaised + t -- system change
polite’ = polite } -- no sys change

pred callLock2Enabled [t: Thread] { -- precondition on system
t.(Lock.lockState) = Waiting && t ! in Progs.runningProg }

pred callLock2 [t: Thread] {
callLock2Enabled [t]
progState’ = progState -- no domain change
runningProg’ = runningProg -- no interface change

18 P. Zave and T. Nelson

Lock.lockState’ = Lock.lockState ++ (t -> Waiting2) --interface chng
flagRaised’ = flagRaised -- no system change
Lock.polite’ = t } -- system change

After callLock1, the lockState of the thread is Waiting. After callLock2, the
lockState of the thread is Waiting2. In each action, only one of flagRaised and
polite is modified.

The lockReturn action also becomes two actions, one with a precondition
based on flagRaised, and one with a precondition based on polite. There is no
intermediate state, however, because each action returns control to the user
program, so only one is executed for each call. This is the equivalent of combining
the two preconditions, shown below, with an or operator.

pred lockReturn1Enabled [t: Thread] { -- precondition on system
t.(Lock.lockState) = Waiting2 && t ! in Progs.runningProg

&& Lock.flagRaised = t }

pred lockReturn2Enabled [t: Thread] { -- precondition on system
t.(Lock.lockState) = Waiting2 && t ! in Progs.runningProg

&& Lock.polite ! = t }

With this change, the stateInvariant and sequentialControl assertions must
also be rewritten, in obvious ways. Then all the previous assertions can still
be verified, showing that the Peterson lock can handle the full concurrency of
multiprocessor implementations. We should have expected this, knowing that
the Peterson lock is being taught 43 years after its invention. But if this were a
new locking algorithm, how else but with a valid model could we be sure that it
works?

(12) In our final validation step, we turn our attention to the length of traces.
By default, the Alloy Analyzer checks all traces up to 10 states and 10 actions.
With previous model versions, in 6 actions both threads could go through a
complete cycle, which makes 10 actions seem like a reasonable standard. In the
new version of Lock 3, however, a thread cycles in 4 actions, and both can cycle
in 8—too close to 10 for comfort. To be sure of more thorough coverage, the
Lock 3 model now runs for 16 actions (steps), which may be excessive but is still
efficient. Trace lengths are extended as follows.

check domainNoStarvation for 2 but 16 steps

8 Summary

Table 1 summarizes the validation steps in this paper, of which a majority are
automated, and a majority found a problem of some kind. In reference to the
three categories introduced in §4, steps 1, 2, 11, and 12 are general-purpose.
Steps 4 and 9 ensure that the domain and system are properly separated, while
steps 5, 6, 7, 8, and 10 check the validity of the domain model. Step 3 is also

Validation of Formal Models 19

Validation Check Version Manual/ Problem
Automated Found?

1 every variable is always defined

1

Man No
2 expected state invariant holds Auto No
3 control within a thread is sequential Auto Yes
4 domain and system are separate in actions Man No
5 in domain, both threads can get lock Auto No
6 in domain, there is contention Auto Yes
7 in domain, there is fault-tolerance

2
Auto Yes

8 in domain, shared resource can be absent Auto Yes
9 requirements constrain the domain only Man Yes
10 specification is sufficient to satisfy requirements

3
Auto No

11 actions are atomic Man Yes
12 trace length is adequate Man Yes

Table 1. A summary of validation steps in the case study. Early validation checks are
also made on all later versions. A “problem found” can be a failure of validity, or a bug
in one of the locks.

general-purpose, but in this model the problem it revealed was a problem of
domain/system separation.

For users of Alloy and other modeling languages, visualization of model in-
stances is an indispensable validation tool. The Alloy Analyzer is notable for
the excellence of its visualization, and has inspired a great deal of research on
improving it even further (e.g., Sterling [6, 26], Forge [21], et al. [1, 4, 18, 24]).

The validation techniques presented in this paper are complementary to visu-
alization in every way. In short, the techniques in this paper produce focused and
interesting model instances to be understood, and visualization makes it easier
to understand them. The techniques in this paper provide relevant questions
about the model, and visualization makes it easier to answer them.

9 The importance of domain models

In §2 we introduced the distinction between the formal semantics of a model
and its meaning. Its meaning explains how the formal semantics apply to the
real world. The meaning implies, for each explicit or implicit constraint in the
model, that it should hold because the domain naturally causes it to hold, or
because the system implementation will cause it to hold.

Despite its history, the idea of domain modeling still seems to be puzzling
or controversial to many people. And we all know that software-engineering
concepts are tricky to teach because they show their true value only in large,
complex, long-lived software projects. With this in mind, we offer justifications
that might appeal to students, followed by those that rely on the wisdom of
experience.

20 P. Zave and T. Nelson

For students, the main point is that the heart of the domain model is the four
behavioral scenarios encoded in these predicates: bothProgsRequestLock, thereIs-
Contention, faultTolerantBehavior, noSharedResource. Most directly, we know
from Herlihy that there is something wrong with both Locks 1 and 2, and the
exact bugs are diagnosed with these predicates alone (Steps 6 and 7). Of the
four predicates, three led to the discovery of some problem, whether algorithmic
bug or validation problem.

Another discussion-worthy point is the way that domain modeling converts
issues of formal semantics (which can differ from language to language) to issues
of meaning. There are two examples in this paper. First, there is the discussion
about deadlocks in §4.4. Second, although not previously discussed, there is
the technique of vacuity checking, which checks—for each implication—that the
implication is not trivially true because the antecedent is unsatisfiable. In this
case study, all requirements are implications with anyTrace as antecedent. The
domain model ensures that anyTrace is not just satisfiable in some possibly-
trivial semantic sense, but that it is satisfied by useful and common scenarios.

A colleague who teaches formal methods tells us that, “many students stop
after writing and checking one or two simple predicates, believing that their
model is correct.” Very likely the one or two predicates were all they could think
of! A final point to stress with students is that thinking about the domain gives
you something real to think about—which fires the imagination and leads to
much richer and more realistic models.

For more experienced audiences, we might point out that an emphasis on
domain modeling is very helpful for seeing how a model might be made more
general, and for encouraging generality. General models for important domains
are valuable reusable artifacts [27].

More concretely, domain models are at the heart of well-known techniques
such as model-based testing. A domain model can be used to enumerate se-
quences of operations that drive a system into a particular state or (even when
state is not involved) generate tests that exercise the space of structurally-
complex inputs, as in TestEra [19], Korat [20], and Whispec [25]. Domain models
can even be used to aid in evaluating student testing [22]. Likewise, in property-
based testing, as popularized by the QuickCheck [3] tool, the properties them-
selves are reliant on a (perhaps unstated) domain model. For example, properties
might need to express what it means for a list of names to be sorted (by which lin-
guistic convention?) or whether a year occurs before another (must we consider
the Julian-Gregorian calendar transition?). Without the domain, we don’t—and
can’t—know what it means for a system to be “correct.”

Alloy 6 is the result of merging Alloy with Electrum [17], which adds full
support for linear temporal logic to Alloy. As part of the literature on Electrum,
in [2] there is a proposal for imposing more structure on actions. Do these pro-
posed structures help support validation or force models to be more valid? In [2]
there is automatic generation of frame conditions for actions, which is certainly
helpful. No other aspects of their proposal would help with the validation steps
in this particular case study. Nevertheless, this seems to be a promising direc-

Validation of Formal Models 21

tion for future research. Small additions to the syntax of actions might be very
helpful for automating more validation checks.

From our perspective, validation is under-appreciated, and too much of what
comes out of verification tools is, effectively, garbage. Some people believe that
you cannot teach validation—that it is learned only in the school of hard knocks—
but we do not agree. Hopefully this case study will help other teachers of formal
methods think about how they would teach validation.

References

1. Bendersky, P., Galeotti, J.P., Garbervetsky, D.: The DynAlloy visualizer. In:
Aguirre, N., Ribeiro, L. (eds.) Latin American Workshop on Formal Methods.
vol. 139, pp. 59–64 (2013)

2. Brunel, J., Chemouil, D., Cunha, A., Hujsa, T., Macedo, N., Tawa, J.: Proposition
of an action layer for Electrum. In: Proceedings of the 6th International ABZ
Conference. Southampton, United Kingdom (2018)

3. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming (2000).
https://doi.org/10.1145/357766.351266

4. Couto, R., Campos, J.C., Macedo, N., Cunha, A.: Improving the visualization of
Alloy instances. In: Masci, P., Monahan, R., Prevosto, V. (eds.) Proceedings 4th
Workshop on Formal Integrated Development Environment. vol. 284, pp. 37–52
(2018)

5. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
Proceedings of the 24th International Joint Conference on Artificial Intelligence
(2015)

6. Dyer, T., Baugh, J.: Sterling: A web-based visualizer for relational modeling lan-
guages. In: Rigorous State Based Methods (2021)

7. Hayes, I.J., Jones, C.B., Meinicke, L.M.: Specifying and reasoning about shared-
variable concurrency. In: Theories of Programming and Formal Methods. Springer
LNCS 14080 (2023)

8. Herlihy, M.: Multiprocessor synchronization: Mutual exclusion. https:
//cs.brown.edu/courses/csci1760/lectures/lecture%202%20mutual%
20exclusion%20dark.pptx, accessed 28 October 2023.

9. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley (2004)

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006, 2012)

11. Jackson, M.: Problem Frames. Addison-Wesley (2001)
12. Jackson, M., Zave, P.: Domain descriptions. In: Proceedings of the IEEE Inter-

national Symposium on Requirements Engineering. pp. 56–64. IEEE Computer
Society Press (1992)

13. Jackson, M., Zave, P.: Deriving specifications from requirements: An example. In:
Proceedings of the 17th International Conference on Software Engineering. pp.
15–24. ACM Press (April 1995)

14. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. Transactions on Programming Languages and Systems 5(4), 596–619 (1983)

15. Jones, C.B.: Accommodating interference in the formal design of concurrent object-
based programs. Formal methods in system design 8(2), 105–122 (1996)

22 P. Zave and T. Nelson

16. Jones, C.B.: From problem frames to HJJ and its known unknowns. In: Nuseibeh,
B., Zave, P. (eds.) Software Requirements and Design: The Work of Michael Jack-
son, pp. 357–368. Good Friends Publishing (2010)

17. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: Proceedings
of the 24th ACM SIGSOFT International Symposium on the Foundations of Soft-
ware Engineering. ACM (2016)

18. Macedo, N., Cunha, A., Pereira, J., Carvalho, R., Silva, R., Paiva, A.C.R., Ra-
malho, M.S., Silva, D.C.: Experiences on teaching Alloy with an automated assess-
ment platform. Sci. Comput. Program. 211, 102690 (2021)

19. Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of
Java programs (2001). https://doi.org/10.1109/ASE.2001.989787

20. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for generating
structurally complex test inputs (2007). https://doi.org/10.1109/ICSE.2007.48

21. Nelson, T., Greenman, B., Prasad, S., Dyer, T., Bove, E., Chen, Q., Cutting, C.,
Vecchio, T.D., LeVine, S., Rudner, J., Ryjikov, B., Varga, A., Wagner, A., West,
L., Krishnamurthi, S.: Forge: A tool and language for teaching formal methods.
In: Object-Oriented Programming Systems, Languages, and Applications (2024),
(accepted and in preparation, to appear)

22. Nelson, T., Rivera, E., Soucie, S., Del Vecchio, T., Wrenn, J., Krish-
namurthi, S.: Automated, targeted testing of property-based testing pred-
icates. In: The Art, Science, and Engineering of Programming (2022).
https://doi.org/10.22152/programming-journal.org/2022/6/10

23. Peterson, G.L.: Myths about the mutual exclusion problem. Information Processing
Letters 12(3), 115–116 (1981)

24. Rayside, D., Chang, F.S., Dennis, G., Seater, R., Jackson, D.: Automatic visualiza-
tion of relational logic models. Electron. Commun. Eur. Assoc. Softw. Sci. Technol.
7 (2007). https://doi.org/10.14279/tuj.eceasst.7.94

25. Shao, D., Khurshid, S., Perry, D.E.: Whispec: White-box testing of libraries using
declarative specifications (2007). https://doi.org/10.1145/1512762.1512764

26. Siegel, A., Santomauro, M., Dyer, T., Nelson, T., Krishnamurthi, S.: Prototyping
formal methods tools: A protocol analysis case study. In: Protocols, Strands, and
Logic. pp. 394–413 (2021). https://doi.org/10.1007/978-3-030-91631-2_22

27. Zave, P.: Theories of everything. In: Proceedings of the 38th International Confer-
ence on Software Engineering. IEEE (2016)

28. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans-
actions on Software Engineering and Methodology 6(1), 1–30 (January 1997)

29. Zave, P., Nelson, T.: Three versions of a two-party lock: A case study in formal
modeling. https://pamelazave.com/peterson.zip (2024)

