
A

A
A

A

A

A
A

A A

A A

A

FORMAL METHODS IN NETWORKING

COMPUTER SCIENCE 598D, SPRING 2010

PRINCETON UNIVERSITY

LIGHTWEIGHT MODELING

IN PROMELA/SPIN AND ALLOY

Pamela Zave

AT&T Laboratories—Research

Florham Park, New Jersey, USA

A

A
A

A

A

A
A

A A

A A

A

LIGHTWEIGHT MODELING

DEFINITION

constructing a very abstract model
of the core concepts of a system

using a "push-button" analysis tool
to explore its properties

WHY IS IT "LIGHTWEIGHT"?

because the model is very abstract
in comparison to a real
implementation, and focuses only
on core concepts, it is small and
can be constructed quickly

because the analysis tool is "push-
button", it yields results with little
effort

in contrast,
theorem proving is not "push-button"

"analysis" is more
general than "verification"

WHAT IS ITS VALUE?

it is a design tool that reveals
conceptual errors early

it is a documentation tool that
provides complete, consistent, and
unambiguous information to
implementors and users

decades of research on
software engineering proves
that the cost of fixing a bug
rises exponentially with the

delay in its discovery

it is easy (at least to get started)
and fun!

"If you like surprises, you will
love lightweight modeling."

—Pamela Zave

Read introduction to Software
Abstractions for Daniel Jackson's view.

A

A
A

A

A

A
A

A A

A A

A

WHY IS LIGHTWEIGHT MODELING EASY, SURPRISING?

EASY + SURPRISING = FUN

PROGRAMMING:

1 write a program

2 think of a test case

3 run the program on the test
 that you thought of

LIGHTWEIGHT MODELING

1 write a model (no bigger
 than a small program)

2 push the "analyze" button

3 get results from all possible
 executions in a particular
 category, including "tests"
 you would never have
 thought of!

HOW MODEL CHECKERS DO IT

initial state

all data structures have fixed size, so state space
is bounded (includes implicit structures such as
call stack)

compute all
 possible state
 transitions

continue expanding graph until
a fixed point is reached

the result is an explicit, finite reachability graph
representing all possible states, state transitions,
and executions (finite or infinite paths through the
graph)

A

A
A

A

A

A
A

A A

A A

A

WHAT IS THE HIDDEN CHALLENGE?

It is so easy to write a model, ask the
analyzer a question, get an answer . . .

. . . but not so easy to know what any
of these means in the real world.

STATEMENTS IN MODEL

domain knowledge: description
of the environment in which the
system will operate (fact or
assumption)

specification: an implementable
description of how the
hardware/software system
should behave

requirement: a description of
how the environment should
behave when the system is
implemented and deployed

sanity check: intended to be
redundant

NONDETERMINISM IN MODEL

environment choice
implementation freedom
system failure
concurrency

ANALYSIS QUESTIONS

Is the model consistent (can be
realized) ?
Does the model mean what I think it
means ("validation") ?

Is the model correct ("verification") ?
sanity checks help

environment systeminter-
face

knowledge,
requirements specification

knowledge & specification => requirements

Read "Deriving specifications from requirements:
An example" for an example with all the parts.

A

A
A

A

A

A
A

A A

A A

A

SPIN AND PROMELA

SPIN IS A MODEL CHECKER PROMELA IS ITS MODELING
LANGUAGE

originated in the 1980's at Bell Labs

freely available and actively
maintained

well-engineered and mature

large user base, in both academia
and industry

used in mission-critical and safety-
critical software development

Spin user workshops have been
held annually since 1995

unlike most mature model
checkers, Spin is intended for
software verification, not hardware
verification

"Promela" derived from "protocol
modeling language"

Promela resembles a primitive
programming language

it has built-in message queues for
inter-process communication

Read CalTech lecture for Holzmann's
introduction to model checking.

Spin and other model checkers
can also be used for

verification of implementations,
although that is not the focus here

A

A
A

A

A

A
A

A A

A A

A

mtype = { invite, accept, reject }
chan left = [3] of {mtype};
chan right = [3] of {mtype};
proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: out!invite; in?accept
 od;
end: skip
}
proctype callee (chan in, out) {
 in?invite;
invited: do
 :: out!accept; goto confirmed
 :: out!reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: out!invite; in?accept
 od;
end: skip
}
init { atomic { run caller(left,right);
 run callee(right,left)
 } }

do statement executes zero or more
guarded commands

chan?mtype reads a message of
type mtype from chan

chan!mtype writes a message of
type mtype to chan

a guarded command can be executed
only if its guard is true/executable

executable iff. chan is not empty
and its first message is of type
mtype

executable iff. chan is not full and
holds messages of type mtype

caller callee

left (bounded, FIFO)

right

SIP VERSION 1

nondeterminism models:

environment choice
concurrency

A

A
A

A

A

A
A

A A

A A

A

mtype = { invite, accept, reject }
chan left = [3] of {mtype};
chan right = [3] of {mtype};
proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: out!invite; in?accept
 od;
end: skip
}
proctype callee (chan in, out) {
 in?invite;
invited: do
 :: out!accept; goto confirmed
 :: out!reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: out!invite; in?accept
 od;
end: skip
}
init { atomic { run caller(left,right);
 run callee(right,left)
 } }

caller callee

SIP VERSION 1

invite

invite

if both processes execute this
statement at about the same
time, they will deadlock

A

A
A

A

A

A
A

A A

A A

A

proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: out!invite; goto reInviting
 od;
reInviting: do
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?invite; out!race
 od;
end: skip
}

until further notice, we are using
only default analysis in Spin

proctype callee (chan in, out) {
 in?invite;
invited: do
 :: out!accept; goto confirmed
 :: out!reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: out!invite; goto reInviting
 od;
reInviting: do
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?invite; out!race
 od;
end: skip
}

SIP VERSION 2

FIXES DEADLOCK DISCOVERED IN VERSION 1

mtype = { invite, accept, reject, race }

neither process terminates, but analysis
reports no errors because it is only looking
for invalid end states

A

A
A

A

A

A
A

A A

A A

A

SIP VERSION 3

proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: out!bye; goto end
 od;
reInviting: do
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?invite; out!race
 od;
end: skip
}

proctype callee (chan in, out) {
 in?invite;
invited: do
 :: out!accept; goto confirmed
 :: out!reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: out!bye; goto end
 od;
reInviting: do
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?invite; out!race
 od;
end: skip
}

mtype = { invite, accept, reject, race, bye, byeAck }

ADDS BYE AND ITS ACK TO END DIALOG

A

A
A

A

A

A
A

A A

A A

A

SIP VERSION 3

proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: out!bye; goto end
 od;
reInviting: do
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?invite; out!race
 od;
end: skip
}

proctype callee (chan in, out) {
 in?invite;
invited: do
 :: out!accept; goto confirmed
 :: out!reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: out!bye; goto end
 od;
reInviting: do
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?invite; out!race
 od;
end: skip
}

if one of the processes is reInviting,
and the first message in its input
queue is bye, it will be blocked
forever

A

A
A

A

A

A
A

A A

A A

A

SIP VERSION 4

FIXES BLOCKAGE IN VERSION 3

proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck;
 goto end
 :: out!invite; goto reInviting
 :: out!bye; goto end
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck;
 goto end
 od;
end: skip
}

proctype callee (chan in, out) {
 in?invite;
invited: do
 :: out!accept; goto confirmed
 :: out!reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck;
 goto end
 :: out!invite; goto reInviting
 :: out!bye; goto end
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck;
 goto end
 od;
end: skip
}

A

A
A

A

A

A
A

A A

A A

A

SIP VERSION 4

proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck;
 goto end
 :: out!invite; goto reInviting
 :: out!bye; goto end
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck;
 goto end
 od;
end: skip
}

proctype callee (chan in, out) {
 in?invite;
invited: do
 :: out!accept; goto confirmed
 :: out!reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck;
 goto end
 :: out!invite; goto reInviting
 :: out!bye; goto end
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck;
 goto end
 od;
end: skip
}

if a process sends a bye and
ends, it may leave messages
unread and unprocessed

"-q" runtime option makes an
end state invalid if it has
nonempty queues

A

A
A

A

A

A
A

A A

A A

A

SIP VERSION 5

GUARANTEES THAT BOTH PROCESSES ARE INPUT-ENABLED

proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?invite; assert(false)
 :: in?accept; goto confirmed
 :: in?reject; goto end
 :: in?race; assert(false)
 :: in?bye; assert(false)
 :: in?byeAck; assert(false)
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?accept; assert(false)
 :: in?reject; assert(false)
 :: in?race; assert(false)
 :: in?bye; out!byeAck;
 goto end
 :: in?byeAck; assert(false)
 :: out!invite; goto reInviting
 :: out!bye; goto Byeing
 od;

reInviting: do
 :: in?invite; out!race
 :: in?accept; goto confirmed
 :: in?reject; assert(false)
 :: in?race; goto confirmed
 :: in?bye; out!byeAck;
 goto end
 :: in?byeAck; assert(false)
 od;
Byeing: do
 :: in?invite
 :: in?accept; assert(false)
 :: in?reject; assert(false)
 :: in?race; assert(false)
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip
}

in every state, a response to
every message is defined

assertions identify the inputs
we do not expect—these
are sanity checks

A

A
A

A

A

A
A

A A

A A

A

SIP VERSION 5

proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck;
 goto end
 :: out!invite; goto reInviting
 :: out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck;
 goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip
}

proctype callee (chan in, out) {
 in?invite;
invited: do
 :: out!accept; goto confirmed
 :: out!reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck;
 goto end
 :: out!invite; goto reInviting
 :: out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck;
 goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip
}

LOOKS BETTER WHEN UNREACHABLE CODE
 REMOVED

