
A

A
A

A

A

A
A

A A

A A

A

FORMAL METHODS IN NETWORKING

COMPUTER SCIENCE 598D, SPRING 2010

PRINCETON UNIVERSITY

LIGHTWEIGHT MODELING

IN PROMELA/SPIN AND ALLOY

Pamela Zave

AT&T Laboratories—Research

Florham Park, New Jersey, USA

A

A
A

A

A

A
A

A A

A A

A

CASE STUDY: CHORD

CHORD IS A WELL-KNOWN
DISTRIBUTED HASH TABLE

has a lookup protocol, which will
be ignored

has a ring-maintenance protocol,
which is the subject of study

although the ring-maintenance
protocol does not look much like a
normal routing protocol, it has the
same purpose

WHY CHOOSE CHORD?

it's interesting! (actually, it chose
me)

it's easy, because the protocol is
presented in compact pseudocode

it's well-studied already

"three features that distinguish
Chord from many other peer-to-
peer lookup protocols are its
simplicity, provable correctness,
and provable performance"

CONCLUSIONS

more evidence for the value of
lightweight modeling

although it seems to be an unlikely
candidate in many ways, Alloy is
actually quite useful for lightweight
modeling of network protocols, and
is complementary to model checking

read paper for
the full evidence

A

A
A

A

A

A
A

A A

A A

A

1

8

14

21

32
38

42

48

51

STORAGE AND LOOKUP OF (KEY, VALUE) PAIRS

identifier of a node (assumed
unique) is an m-bit hash of
its IP address

in this talk I refer to a node
only by its identifier

members are arranged in a
ring, with each member node
having a successor pointer to
the next member node

m = 6

keys 22 - 32 are
stored here

for efficient lookup,
each node maintains
a finger table, such
as this one for node
8:

here + 1
here + 2
here + 4
here + 8
here + 16
here + 32

14
14
14
21
32
42

A

A
A

A

A

A
A

A A

A A

A

THE JOIN EVENT

BEFORE

AFTER

joining node 24 must
know some member 7,
asks 7 to look up 24

7

24

24

16

30

30

7

16

30

where 24?

JOINS DISRUPT THE RING
STRUCTURE BY ADDING
APPENDAGES

THE RING STRUCTURE IS
REPAIRED BY STABILIZATION

A

A
A

A

A

A
A

A A

A A

A

16

24

30

38

9 24 asks its successor:
what is your

predecessor?

30 replies: 16

16

24

30

38

9

16

24

30

38

9

STABILIZATION OPERATION: THE PREQUEL

1: BEFORE STABILIZE EVENT

2: AFTER STABILIZE EVENT,
 BEFORE NOTIFY EVENT

3: AFTER NOTIFY EVENT

because 16 is not a better
successor to 24 than 30
is, 24 has not changed its
successor pointer

next, 24 notifies its
successor

because 30 had a
worse predecessor,
it has changed its
predecessor
pointer to 24

A

A
A

A

A

A
A

A A

A A

A

16

24

30

38

9 16 asks its successor:
what is your

predecessor?

30 replies: 24

16

24

30

38

9

16

24

30

38

9

THE STABILIZATION OPERATION

1: BEFORE STABILIZE EVENT

2: AFTER STABILIZE EVENT,
 BEFORE NOTIFY EVENT

3: AFTER NOTIFY EVENT

because 24 is a better
successor to 16 than 30
is, 16 has changed its
successor pointer to 24

next, 16 notifies its new
successor

because 24 had no
predecessor (or a
worse one), it has
changed its
predecessor
pointer to 16

A

A
A

A

A

A
A

A A

A A

A

WHAT STABILIZATION CAN DO . . .

2

4

3

0

1

0 2

4

0 2

4

0 2

4

0 2

4

. . . AND CANNOT DO

stabilization cannot fix a disordered ring
FULL RING-MAINTENANCE
PROTOCOL ALSO INCLUDES
NODE FAILURES (OR
SILENT LEAVING) . . .

. . . AND RECONCILIATION
(WHICH RECOVERS FROM
FAILURES)

so there are "join-only" and
"full" models—only the
join-only model can be
proven correct

A

A
A

A

A

A
A

A A

A A

A

sig Node {
 succ: Node lone -> Time,
 prdc: Node lone -> Time }

pred Member [n: Node, t: Time] { some n.succ.t }

fact { all n: Node, t: Time | no n.succ.t => no n.prdc.t }

pred Between [n1, n2, n3: Node] {
 lt[n1,n3] => (lt[n1,n2] && lt[n2,n3])
 else (lt[n1,n2] || lt[n2,n3]) }

CHORD STATE (JOIN-ONLY MODEL)

Between [5, 10, 12]

Between [51, 1, 3]

Between [51, 59, 3]

a node is a member of the
ring at time t if it has a
successor at time t

if it is not a member, it
does not have a
predecessor, either

the type of succ and prdc is Node -> Node -> Time

the successor of node n at time t is n.succ.t

at any time, a node has 0 or 1 successors

A

A
A

A

A

A
A

A A

A A

A

THE MODEL OF TIME (SAME IN EVERY MODEL)

sig Time { }
open util/ordering[Time] as trace

abstract sig Event {
 pre: Time,
 post: Time,
 cause: lone (Event - Null)
}

fact TemporalStructure {
 all t: Time - trace/last | one e: Event | e.pre = t
 all t: trace/last | no e: Event | e.pre = t
 all e: Event | e.post = (e.pre).trace/next
}

sig Null extends Event { } { no cause }

fact CauseHasSingleEffect { cause in Event lone -> Event }

fact CausePrecedesEffect {
 all e1, e2: Event | e1 = e2.cause => lt[e1.pre,e2.pre] }

individuals of type Time
(totally ordered)

individuals of type Event

pre post cause

all state information is time-stamped

in a scope with 6 Times, there must be
6 times and 5 events—null events take
up the slack

these are for
convenience in
modeling events

A

A
A

A

A

A
A

A A

A A

A

MODEL OF JOIN EVENTS

abstract sig RingEvent extends Event { node: Node }

sig Join extends RingEvent { } { no cause }

fact NonmemberCanJoin {

 all j: Join, n: j.node, t: j.pre |

 ! Member[n,t]

 && (some m: Node | Member[m,t]
 && Between[m,n,m.succ.t]
 && n.succ.(j.post) = m.succ.t
)

 && no n.prdc.(j.post)

 && no cause:>j
}

every ring event has a node
field; event can only change
the fields of this node

a join event is a ring event;
it has no cause, so it can occur
at any time that its preconditions
are satisfied

preconditions: n is not a member
already; there is a member m such
that n is between m and m's
successor

postconditions: the successor of n
is the successor of m; n does not
have a predecessor (yet)this event

does not cause
any event

in addition, there are "frame conditions"
saying that node fields are not changed
except as specified in event specifications

A

A
A

A

A

A
A

A A

A A

A

IDEAL

IDEAL VS. VALID STATES

7

19

29
40

55
7

19

16

13

263

29
40

55

pred OneOrderedCycle [t: Time] {

 let cycleMembers = { n: Node | n in n.(^(succ.t)) } |

 some cycleMembers

 && (all disj n1, n2: cycleMembers | n1 in n2.(^(succ.t)))

 && (all disj n1, n2, n3: cycleMembers | n2 = n1.succ.t => ! Between[n1,n3,n2]
)
}

VALID (THE SYSTEM
INVARIANT)

VALID is a conjunction of several properties, such as . . .

there is at
least one
cycle there is no

more than
one cycle

the cycle is globally ordered by identifiers

A

A
A

A

A

A
A

A A

A A

A

VERIFICATION LEMMAS

assert InitialIsValid {
 let members = { n: Node | Member[n,trace/first] } |
 (one members
 && members.succ.trace/first = members
 && no members.prdc.trace/first
) => Valid[trace/first]
}
check InitialIsValid for 8 but 0 Event, 1 Time

assert JoinPreservesValidity {
 some Join && Valid[trace/first] => Valid[trace/last] }
check JoinPreservesValidity for 8 but 1 Event, 2 Time

assert StabilizationPreservesValidity {
 (some Stabilize && Valid[trace/first])
 => (Valid[trace/first.trace/next] && Valid[trace/last]) }
check StabilizationPreservesValidity for 8 but 2 Event, 3 Time

assert ValidRingIsImprovable {
 (Valid[trace/first] && ! Ideal[trace/first]) =>
 ((some n, newSucc: Node |
 StabilizationWillChangeSuccessor[n,newSucc,trace/first])
 || (some n, nSucc: Node |
 StabilizationShouldChangePredecessor[n,nSucc,trace/first])
)
}
check ValidRingIsImprovable for 8 but 0 Event, 1 Time

true if stabilization
at n will change
its successor to
newSucc

true if stabilization
at n will change
the predecessor of
nSucc to n

can also analyze traces
in which two stabilizations
or a join and a stabilization
interleave—protocol
behavior is different, but
the difference is benign

A

A
A

A

A

A
A

A A

A A

A

PROOF OUTLINE

check lemma "stabilization
cannot change an ideal ring"

In any reachable state, if there are no subsequent joins, then
eventually the network will become ideal and remain ideal.

PROOF:

1 Show that Valid is an
invariant.

2 Show that any time
the network is Valid
and not Ideal, some
stabilization that will
change the network
is enabled.

3 Show that the
network will become
Ideal.

Show that the
network will remain
Ideal.

4

enabled stabilizations and
therefore changes will
continue to occur
every change is an
improvement
because the ring is finite,
after a finite number of
improvements it will be ideal

check lemmas:
"initial ring is Valid"
"join preserves Valid"
"stabilization preserves Valid"

formalize as a lemma and
check

Alloy Analyzer
checks,
exhaustively, all
model instances
with up to 8
network nodes

this is
convincing
evidence
because no
relevant
example or
counterexample
(of many) has
been bigger
than 4

THEOREM:

A

A
A

A

A

A
A

A A

A A

A

COMPARISON

PROMELA/SPIN ALLOY

reachable
state space

model state small and bounded small and bounded

automatically generated,
exact, not readable

invariant is a user-constructed
superset; readable

traces Spin explores all traces because temporal sequences are
not built in and not optimized
(e.g., successive states are both
represented even if they are
identical), Alloy can only explore
short traces

temporal
logic

Spin automatically
checks any formula in
temporal logic

Alloy Analyzer can only check
safety properties

temporal
sequencing

built into Promela;
displayed well by Spin

not built into Alloy language

state
structure

primitive in Promela;
displayed poorly by Spin

Alloy language is rich and
expressive; many display options

invariants except for the most basic
ones, an invariant must be
written as a C program

Alloy language is rich,
expressive, and concise

the price of
push-button
analysis

